CPS-Test-Mobile / app.py
Ali2206's picture
Update app.py
a8c9181 verified
import sys
import os
import json
import shutil
import re
import gc
import time
from datetime import datetime
from typing import List, Tuple, Dict, Union, Optional
import pandas as pd
import pdfplumber
import torch
import matplotlib.pyplot as plt
from fpdf import FPDF
import unicodedata
from fastapi import FastAPI, UploadFile, File, HTTPException
from fastapi.responses import FileResponse, JSONResponse
from fastapi.middleware.cors import CORSMiddleware
from pydantic import BaseModel
# === Configuration ===
persistent_dir = "/data/hf_cache"
model_cache_dir = os.path.join(persistent_dir, "txagent_models")
tool_cache_dir = os.path.join(persistent_dir, "tool_cache")
file_cache_dir = os.path.join(persistent_dir, "cache")
report_dir = os.path.join(persistent_dir, "reports")
for d in [model_cache_dir, tool_cache_dir, file_cache_dir, report_dir]:
os.makedirs(d, exist_ok=True)
os.environ["HF_HOME"] = model_cache_dir
os.environ["TRANSFORMERS_CACHE"] = model_cache_dir
current_dir = os.path.dirname(os.path.abspath(__file__))
src_path = os.path.abspath(os.path.join(current_dir, "src"))
sys.path.insert(0, src_path)
from txagent.txagent import TxAgent
MAX_MODEL_TOKENS = 131072
MAX_NEW_TOKENS = 4096
MAX_CHUNK_TOKENS = 8192
BATCH_SIZE = 1
PROMPT_OVERHEAD = 300
SAFE_SLEEP = 0.5
# === FastAPI App Setup ===
app = FastAPI(title="Clinical Patient Support System API",
description="API for analyzing and summarizing unstructured medical files")
# CORS configuration for mobile app access
app.add_middleware(
CORSMiddleware,
allow_origins=["*"],
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
)
# === Data Models ===
class AnalysisRequest(BaseModel):
"""Request model for file analysis"""
filename: str
file_content: str # Base64 encoded file content (mobile apps can send this)
class AnalysisResponse(BaseModel):
"""Response model for analysis results"""
status: str
message: str
report_id: Optional[str] = None
summary: Optional[str] = None
error: Optional[str] = None
class ReportResponse(BaseModel):
"""Response model for report download"""
status: str
report_id: str
download_url: str
# === Helper Functions (same as original) ===
def estimate_tokens(text: str) -> int:
return len(text) // 4 + 1
def clean_response(text: str) -> str:
text = re.sub(r"$.*?$|\bNone\b", "", text, flags=re.DOTALL)
text = re.sub(r"\n{3,}", "\n\n", text)
return text.strip()
def remove_duplicate_paragraphs(text: str) -> str:
paragraphs = text.strip().split("\n\n")
seen = set()
unique_paragraphs = []
for p in paragraphs:
clean_p = p.strip()
if clean_p and clean_p not in seen:
unique_paragraphs.append(clean_p)
seen.add(clean_p)
return "\n\n".join(unique_paragraphs)
def extract_text_from_excel(path: str) -> str:
all_text = []
xls = pd.ExcelFile(path)
for sheet_name in xls.sheet_names:
try:
df = xls.parse(sheet_name).astype(str).fillna("")
except Exception:
continue
for _, row in df.iterrows():
non_empty = [cell.strip() for cell in row if cell.strip()]
if len(non_empty) >= 2:
text_line = " | ".join(non_empty)
if len(text_line) > 15:
all_text.append(f"[{sheet_name}] {text_line}")
return "\n".join(all_text)
def extract_text_from_csv(path: str) -> str:
all_text = []
try:
df = pd.read_csv(path).astype(str).fillna("")
except Exception:
return ""
for _, row in df.iterrows():
non_empty = [cell.strip() for cell in row if cell.strip()]
if len(non_empty) >= 2:
text_line = " | ".join(non_empty)
if len(text_line) > 15:
all_text.append(text_line)
return "\n".join(all_text)
def extract_text_from_pdf(path: str) -> str:
import logging
logging.getLogger("pdfminer").setLevel(logging.ERROR)
all_text = []
try:
with pdfplumber.open(path) as pdf:
for page in pdf.pages:
text = page.extract_text()
if text:
all_text.append(text.strip())
except Exception:
return ""
return "\n".join(all_text)
def extract_text(file_path: str) -> str:
if file_path.endswith(".xlsx"):
return extract_text_from_excel(file_path)
elif file_path.endswith(".csv"):
return extract_text_from_csv(file_path)
elif file_path.endswith(".pdf"):
return extract_text_from_pdf(file_path)
else:
return ""
def split_text(text: str, max_tokens=MAX_CHUNK_TOKENS) -> List[str]:
effective_limit = max_tokens - PROMPT_OVERHEAD
chunks, current, current_tokens = [], [], 0
for line in text.split("\n"):
tokens = estimate_tokens(line)
if current_tokens + tokens > effective_limit:
if current:
chunks.append("\n".join(current))
current, current_tokens = [line], tokens
else:
current.append(line)
current_tokens += tokens
if current:
chunks.append("\n".join(current))
return chunks
def batch_chunks(chunks: List[str], batch_size: int = BATCH_SIZE) -> List[List[str]]:
return [chunks[i:i+batch_size] for i in range(0, len(chunks), batch_size)]
def build_prompt(chunk: str) -> str:
return f"""### Unstructured Clinical Records\n\nAnalyze the clinical notes below and summarize with:\n- Diagnostic Patterns\n- Medication Issues\n- Missed Opportunities\n- Inconsistencies\n- Follow-up Recommendations\n\n---\n\n{chunk}\n\n---\nRespond concisely in bullet points with clinical reasoning."""
def init_agent() -> TxAgent:
tool_path = os.path.join(tool_cache_dir, "new_tool.json")
if not os.path.exists(tool_path):
shutil.copy(os.path.abspath("data/new_tool.json"), tool_path)
agent = TxAgent(
model_name="mims-harvard/TxAgent-T1-Llama-3.1-8B",
rag_model_name="mims-harvard/ToolRAG-T1-GTE-Qwen2-1.5B",
tool_files_dict={"new_tool": tool_path},
force_finish=True,
enable_checker=True,
step_rag_num=4,
seed=100
)
agent.init_model()
return agent
def analyze_batches(agent, batches: List[List[str]]) -> List[str]:
results = []
for batch in batches:
prompt = "\n\n".join(build_prompt(chunk) for chunk in batch)
try:
batch_response = ""
for r in agent.run_gradio_chat(
message=prompt,
history=[],
temperature=0.0,
max_new_tokens=MAX_NEW_TOKENS,
max_token=MAX_MODEL_TOKENS,
call_agent=False,
conversation=[]
):
if isinstance(r, str):
batch_response += r
elif isinstance(r, list):
for m in r:
if hasattr(m, "content"):
batch_response += m.content
elif hasattr(r, "content"):
batch_response += r.content
results.append(clean_response(batch_response))
time.sleep(SAFE_SLEEP)
except Exception as e:
results.append(f"❌ Batch failed: {str(e)}")
time.sleep(SAFE_SLEEP * 2)
torch.cuda.empty_cache()
gc.collect()
return results
def generate_final_summary(agent, combined: str) -> str:
combined = remove_duplicate_paragraphs(combined)
final_prompt = f"""
You are an expert clinical summarizer. Analyze the following summaries carefully and generate a **single final concise structured medical report**, avoiding any repetition or redundancy.
Summaries:
{combined}
Respond with:
* Diagnostic Patterns
* Medication Issues
* Missed Opportunities
* Inconsistencies
* Follow-up Recommendations
Avoid repeating the same points multiple times.
""".strip()
final_response = ""
for r in agent.run_gradio_chat(
message=final_prompt,
history=[],
temperature=0.0,
max_new_tokens=MAX_NEW_TOKENS,
max_token=MAX_MODEL_TOKENS,
call_agent=False,
conversation=[]
):
if isinstance(r, str):
final_response += r
elif isinstance(r, list):
for m in r:
if hasattr(m, "content"):
final_response += m.content
elif hasattr(r, "content"):
final_response += r.content
final_response = clean_response(final_response)
final_response = remove_duplicate_paragraphs(final_response)
return final_response
def remove_non_ascii(text):
return ''.join(c for c in text if ord(c) < 256)
def generate_pdf_report_with_charts(summary: str, report_path: str, detailed_batches: List[str] = None):
chart_dir = os.path.join(os.path.dirname(report_path), "charts")
os.makedirs(chart_dir, exist_ok=True)
# Prepare data
categories = ['Diagnostics', 'Medications', 'Missed', 'Inconsistencies', 'Follow-up']
values = [4, 2, 3, 1, 5]
# Chart 1: Bar
bar_chart_path = os.path.join(chart_dir, "bar_chart.png")
plt.figure(figsize=(6, 4))
plt.bar(categories, values)
plt.title('Clinical Issues Overview')
plt.tight_layout()
plt.savefig(bar_chart_path)
plt.close()
# Chart 2: Pie
pie_chart_path = os.path.join(chart_dir, "pie_chart.png")
plt.figure(figsize=(6, 6))
plt.pie(values, labels=categories, autopct='%1.1f%%')
plt.title('Issue Distribution')
plt.tight_layout()
plt.savefig(pie_chart_path)
plt.close()
# Chart 3: Line
trend_chart_path = os.path.join(chart_dir, "trend_chart.png")
plt.figure(figsize=(6, 4))
plt.plot(categories, values, marker='o')
plt.title('Trend Analysis')
plt.tight_layout()
plt.savefig(trend_chart_path)
plt.close()
# PDF init
pdf_path = report_path.replace('.md', '.pdf')
pdf = FPDF()
pdf.set_auto_page_break(auto=True, margin=15)
# === Title Page ===
pdf.add_page()
pdf.set_font("Arial", 'B', 24)
pdf.cell(0, 20, remove_non_ascii("Final Medical Report"), ln=True, align='C')
pdf.set_font("Arial", '', 14)
pdf.cell(0, 10, datetime.now().strftime("Generated on %B %d, %Y at %H:%M"), ln=True, align='C')
pdf.ln(20)
pdf.set_font("Arial", 'I', 12)
pdf.multi_cell(0, 10, remove_non_ascii(
"This report contains a professional summary of clinical observations, potential inconsistencies, and follow-up recommendations based on the uploaded medical document."
), align="C")
# === Summary Section ===
pdf.add_page()
pdf.set_font("Arial", 'B', 16)
pdf.cell(0, 10, remove_non_ascii("Final Summary"), ln=True)
pdf.set_draw_color(200, 200, 200)
pdf.line(10, pdf.get_y(), 200, pdf.get_y())
pdf.ln(5)
pdf.set_font("Arial", '', 12)
for line in summary.split("\n"):
clean_line = remove_non_ascii(line.strip())
if clean_line:
pdf.multi_cell(0, 8, txt=clean_line)
# === Charts Section ===
pdf.add_page()
pdf.set_font("Arial", 'B', 16)
pdf.cell(0, 10, remove_non_ascii("Statistical Overview"), ln=True)
pdf.line(10, pdf.get_y(), 200, pdf.get_y())
pdf.ln(5)
pdf.set_font("Arial", 'B', 12)
pdf.cell(0, 10, remove_non_ascii("1. Clinical Issues Overview"), ln=True)
pdf.image(bar_chart_path, w=180)
pdf.ln(5)
pdf.cell(0, 10, remove_non_ascii("2. Issue Distribution"), ln=True)
pdf.image(pie_chart_path, w=150)
pdf.ln(5)
pdf.cell(0, 10, remove_non_ascii("3. Trend Analysis"), ln=True)
pdf.image(trend_chart_path, w=180)
# === Detailed Tool Outputs ===
if detailed_batches:
pdf.add_page()
pdf.set_font("Arial", 'B', 16)
pdf.cell(0, 10, remove_non_ascii("Detailed Tool Insights"), ln=True)
pdf.line(10, pdf.get_y(), 200, pdf.get_y())
pdf.ln(5)
for idx, detail in enumerate(detailed_batches):
pdf.set_font("Arial", 'B', 13)
pdf.cell(0, 10, remove_non_ascii(f"Tool Output #{idx + 1}"), ln=True)
pdf.set_font("Arial", '', 11)
for line in remove_non_ascii(detail).split("\n"):
pdf.multi_cell(0, 8, txt=line.strip())
pdf.ln(3)
pdf.output(pdf_path)
return pdf_path
# === API Endpoints ===
@app.post("/analyze", response_model=AnalysisResponse)
async def analyze_file(file: UploadFile = File(...)):
"""Endpoint for analyzing medical files"""
try:
start_time = time.time()
# Save the uploaded file temporarily
temp_path = os.path.join(file_cache_dir, file.filename)
with open(temp_path, "wb") as f:
f.write(await file.read())
# Generate a unique report ID
report_id = f"report_{datetime.now().strftime('%Y%m%d_%H%M%S')}"
# Initialize agent (could be done once at startup)
agent = init_agent()
# Process the file
extracted = extract_text(temp_path)
if not extracted:
raise HTTPException(status_code=400, detail="Could not extract text from file")
chunks = split_text(extracted)
batches = batch_chunks(chunks, batch_size=BATCH_SIZE)
batch_results = analyze_batches(agent, batches)
all_tool_outputs = batch_results.copy()
valid = [res for res in batch_results if not res.startswith("❌")]
if not valid:
raise HTTPException(status_code=400, detail="No valid batch outputs generated")
summary = generate_final_summary(agent, "\n\n".join(valid))
# Save report files
report_path = os.path.join(report_dir, f"{report_id}.md")
with open(report_path, 'w', encoding='utf-8') as f:
f.write(f"# Final Medical Report\n\n{summary}")
pdf_path = generate_pdf_report_with_charts(summary, report_path, detailed_batches=all_tool_outputs)
end_time = time.time()
elapsed_time = end_time - start_time
# Clean up temp file
os.remove(temp_path)
return {
"status": "success",
"message": f"Report generated in {elapsed_time:.2f} seconds",
"report_id": report_id,
"summary": summary
}
except Exception as e:
raise HTTPException(status_code=500, detail=str(e))
@app.get("/report/{report_id}", response_model=ReportResponse)
async def get_report(report_id: str):
"""Endpoint for downloading generated reports"""
pdf_path = os.path.join(report_dir, f"{report_id}.pdf")
if not os.path.exists(pdf_path):
raise HTTPException(status_code=404, detail="Report not found")
return {
"status": "success",
"report_id": report_id,
"download_url": f"/download/{report_id}"
}
@app.get("/download/{report_id}")
async def download_report(report_id: str):
"""Endpoint for actual file download"""
pdf_path = os.path.join(report_dir, f"{report_id}.pdf")
if not os.path.exists(pdf_path):
raise HTTPException(status_code=404, detail="Report not found")
return FileResponse(
pdf_path,
media_type="application/pdf",
filename=f"medical_report_{report_id}.pdf"
)
@app.get("/health")
async def health_check():
"""Health check endpoint"""
return {"status": "healthy"}
# === Main Application ===
if __name__ == "__main__":
import uvicorn
uvicorn.run(app, host="0.0.0.0", port=8000)