Update app.py
Browse files
app.py
CHANGED
@@ -6,16 +6,20 @@ import re
|
|
6 |
import gc
|
7 |
import time
|
8 |
from datetime import datetime
|
9 |
-
from typing import List, Tuple, Dict, Union
|
10 |
import pandas as pd
|
11 |
import pdfplumber
|
12 |
-
import gradio as gr
|
13 |
import torch
|
14 |
import matplotlib.pyplot as plt
|
15 |
from fpdf import FPDF
|
16 |
import unicodedata
|
|
|
|
|
|
|
|
|
17 |
|
18 |
# === Configuration ===
|
|
|
19 |
persistent_dir = "/data/hf_cache"
|
20 |
model_cache_dir = os.path.join(persistent_dir, "txagent_models")
|
21 |
tool_cache_dir = os.path.join(persistent_dir, "tool_cache")
|
@@ -41,11 +45,45 @@ BATCH_SIZE = 1
|
|
41 |
PROMPT_OVERHEAD = 300
|
42 |
SAFE_SLEEP = 0.5
|
43 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
44 |
def estimate_tokens(text: str) -> int:
|
45 |
return len(text) // 4 + 1
|
46 |
|
47 |
def clean_response(text: str) -> str:
|
48 |
-
text = re.sub(r"
|
49 |
text = re.sub(r"\n{3,}", "\n\n", text)
|
50 |
return text.strip()
|
51 |
|
@@ -60,29 +98,364 @@ def remove_duplicate_paragraphs(text: str) -> str:
|
|
60 |
seen.add(clean_p)
|
61 |
return "\n\n".join(unique_paragraphs)
|
62 |
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
83 |
if __name__ == "__main__":
|
84 |
-
|
85 |
-
|
86 |
-
import threading
|
87 |
-
threading.Thread(target=lambda: ui.launch(server_name="0.0.0.0", server_port=7860, allowed_paths=["/data/hf_cache/reports"], share=False)).start()
|
88 |
-
uvicorn.run(app, host="0.0.0.0", port=8000)
|
|
|
6 |
import gc
|
7 |
import time
|
8 |
from datetime import datetime
|
9 |
+
from typing import List, Tuple, Dict, Union, Optional
|
10 |
import pandas as pd
|
11 |
import pdfplumber
|
|
|
12 |
import torch
|
13 |
import matplotlib.pyplot as plt
|
14 |
from fpdf import FPDF
|
15 |
import unicodedata
|
16 |
+
from fastapi import FastAPI, UploadFile, File, HTTPException
|
17 |
+
from fastapi.responses import FileResponse, JSONResponse
|
18 |
+
from fastapi.middleware.cors import CORSMiddleware
|
19 |
+
from pydantic import BaseModel
|
20 |
|
21 |
# === Configuration ===
|
22 |
+
|
23 |
persistent_dir = "/data/hf_cache"
|
24 |
model_cache_dir = os.path.join(persistent_dir, "txagent_models")
|
25 |
tool_cache_dir = os.path.join(persistent_dir, "tool_cache")
|
|
|
45 |
PROMPT_OVERHEAD = 300
|
46 |
SAFE_SLEEP = 0.5
|
47 |
|
48 |
+
# === FastAPI App Setup ===
|
49 |
+
app = FastAPI(title="Clinical Patient Support System API",
|
50 |
+
description="API for analyzing and summarizing unstructured medical files")
|
51 |
+
|
52 |
+
# CORS configuration for mobile app access
|
53 |
+
app.add_middleware(
|
54 |
+
CORSMiddleware,
|
55 |
+
allow_origins=["*"],
|
56 |
+
allow_credentials=True,
|
57 |
+
allow_methods=["*"],
|
58 |
+
allow_headers=["*"],
|
59 |
+
)
|
60 |
+
|
61 |
+
# === Data Models ===
|
62 |
+
class AnalysisRequest(BaseModel):
|
63 |
+
"""Request model for file analysis"""
|
64 |
+
filename: str
|
65 |
+
file_content: str # Base64 encoded file content (mobile apps can send this)
|
66 |
+
|
67 |
+
class AnalysisResponse(BaseModel):
|
68 |
+
"""Response model for analysis results"""
|
69 |
+
status: str
|
70 |
+
message: str
|
71 |
+
report_id: Optional[str] = None
|
72 |
+
summary: Optional[str] = None
|
73 |
+
error: Optional[str] = None
|
74 |
+
|
75 |
+
class ReportResponse(BaseModel):
|
76 |
+
"""Response model for report download"""
|
77 |
+
status: str
|
78 |
+
report_id: str
|
79 |
+
download_url: str
|
80 |
+
|
81 |
+
# === Helper Functions (same as original) ===
|
82 |
def estimate_tokens(text: str) -> int:
|
83 |
return len(text) // 4 + 1
|
84 |
|
85 |
def clean_response(text: str) -> str:
|
86 |
+
text = re.sub(r"$.*?$|\bNone\b", "", text, flags=re.DOTALL)
|
87 |
text = re.sub(r"\n{3,}", "\n\n", text)
|
88 |
return text.strip()
|
89 |
|
|
|
98 |
seen.add(clean_p)
|
99 |
return "\n\n".join(unique_paragraphs)
|
100 |
|
101 |
+
def extract_text_from_excel(path: str) -> str:
|
102 |
+
all_text = []
|
103 |
+
xls = pd.ExcelFile(path)
|
104 |
+
for sheet_name in xls.sheet_names:
|
105 |
+
try:
|
106 |
+
df = xls.parse(sheet_name).astype(str).fillna("")
|
107 |
+
except Exception:
|
108 |
+
continue
|
109 |
+
for _, row in df.iterrows():
|
110 |
+
non_empty = [cell.strip() for cell in row if cell.strip()]
|
111 |
+
if len(non_empty) >= 2:
|
112 |
+
text_line = " | ".join(non_empty)
|
113 |
+
if len(text_line) > 15:
|
114 |
+
all_text.append(f"[{sheet_name}] {text_line}")
|
115 |
+
return "\n".join(all_text)
|
116 |
+
|
117 |
+
def extract_text_from_csv(path: str) -> str:
|
118 |
+
all_text = []
|
119 |
+
try:
|
120 |
+
df = pd.read_csv(path).astype(str).fillna("")
|
121 |
+
except Exception:
|
122 |
+
return ""
|
123 |
+
for _, row in df.iterrows():
|
124 |
+
non_empty = [cell.strip() for cell in row if cell.strip()]
|
125 |
+
if len(non_empty) >= 2:
|
126 |
+
text_line = " | ".join(non_empty)
|
127 |
+
if len(text_line) > 15:
|
128 |
+
all_text.append(text_line)
|
129 |
+
return "\n".join(all_text)
|
130 |
+
|
131 |
+
def extract_text_from_pdf(path: str) -> str:
|
132 |
+
import logging
|
133 |
+
logging.getLogger("pdfminer").setLevel(logging.ERROR)
|
134 |
+
all_text = []
|
135 |
+
try:
|
136 |
+
with pdfplumber.open(path) as pdf:
|
137 |
+
for page in pdf.pages:
|
138 |
+
text = page.extract_text()
|
139 |
+
if text:
|
140 |
+
all_text.append(text.strip())
|
141 |
+
except Exception:
|
142 |
+
return ""
|
143 |
+
return "\n".join(all_text)
|
144 |
+
|
145 |
+
def extract_text(file_path: str) -> str:
|
146 |
+
if file_path.endswith(".xlsx"):
|
147 |
+
return extract_text_from_excel(file_path)
|
148 |
+
elif file_path.endswith(".csv"):
|
149 |
+
return extract_text_from_csv(file_path)
|
150 |
+
elif file_path.endswith(".pdf"):
|
151 |
+
return extract_text_from_pdf(file_path)
|
152 |
+
else:
|
153 |
+
return ""
|
154 |
+
|
155 |
+
def split_text(text: str, max_tokens=MAX_CHUNK_TOKENS) -> List[str]:
|
156 |
+
effective_limit = max_tokens - PROMPT_OVERHEAD
|
157 |
+
chunks, current, current_tokens = [], [], 0
|
158 |
+
for line in text.split("\n"):
|
159 |
+
tokens = estimate_tokens(line)
|
160 |
+
if current_tokens + tokens > effective_limit:
|
161 |
+
if current:
|
162 |
+
chunks.append("\n".join(current))
|
163 |
+
current, current_tokens = [line], tokens
|
164 |
+
else:
|
165 |
+
current.append(line)
|
166 |
+
current_tokens += tokens
|
167 |
+
if current:
|
168 |
+
chunks.append("\n".join(current))
|
169 |
+
return chunks
|
170 |
+
|
171 |
+
def batch_chunks(chunks: List[str], batch_size: int = BATCH_SIZE) -> List[List[str]]:
|
172 |
+
return [chunks[i:i+batch_size] for i in range(0, len(chunks), batch_size)]
|
173 |
+
|
174 |
+
def build_prompt(chunk: str) -> str:
|
175 |
+
return f"""### Unstructured Clinical Records\n\nAnalyze the clinical notes below and summarize with:\n- Diagnostic Patterns\n- Medication Issues\n- Missed Opportunities\n- Inconsistencies\n- Follow-up Recommendations\n\n---\n\n{chunk}\n\n---\nRespond concisely in bullet points with clinical reasoning."""
|
176 |
+
|
177 |
+
def init_agent() -> TxAgent:
|
178 |
+
tool_path = os.path.join(tool_cache_dir, "new_tool.json")
|
179 |
+
if not os.path.exists(tool_path):
|
180 |
+
shutil.copy(os.path.abspath("data/new_tool.json"), tool_path)
|
181 |
+
agent = TxAgent(
|
182 |
+
model_name="mims-harvard/TxAgent-T1-Llama-3.1-8B",
|
183 |
+
rag_model_name="mims-harvard/ToolRAG-T1-GTE-Qwen2-1.5B",
|
184 |
+
tool_files_dict={"new_tool": tool_path},
|
185 |
+
force_finish=True,
|
186 |
+
enable_checker=True,
|
187 |
+
step_rag_num=4,
|
188 |
+
seed=100
|
189 |
+
)
|
190 |
+
agent.init_model()
|
191 |
+
return agent
|
192 |
+
|
193 |
+
def analyze_batches(agent, batches: List[List[str]]) -> List[str]:
|
194 |
+
results = []
|
195 |
+
for batch in batches:
|
196 |
+
prompt = "\n\n".join(build_prompt(chunk) for chunk in batch)
|
197 |
+
try:
|
198 |
+
batch_response = ""
|
199 |
+
for r in agent.run_gradio_chat(
|
200 |
+
message=prompt,
|
201 |
+
history=[],
|
202 |
+
temperature=0.0,
|
203 |
+
max_new_tokens=MAX_NEW_TOKENS,
|
204 |
+
max_token=MAX_MODEL_TOKENS,
|
205 |
+
call_agent=False,
|
206 |
+
conversation=[]
|
207 |
+
):
|
208 |
+
if isinstance(r, str):
|
209 |
+
batch_response += r
|
210 |
+
elif isinstance(r, list):
|
211 |
+
for m in r:
|
212 |
+
if hasattr(m, "content"):
|
213 |
+
batch_response += m.content
|
214 |
+
elif hasattr(r, "content"):
|
215 |
+
batch_response += r.content
|
216 |
+
results.append(clean_response(batch_response))
|
217 |
+
time.sleep(SAFE_SLEEP)
|
218 |
+
except Exception as e:
|
219 |
+
results.append(f"❌ Batch failed: {str(e)}")
|
220 |
+
time.sleep(SAFE_SLEEP * 2)
|
221 |
+
torch.cuda.empty_cache()
|
222 |
+
gc.collect()
|
223 |
+
return results
|
224 |
+
|
225 |
+
def generate_final_summary(agent, combined: str) -> str:
|
226 |
+
combined = remove_duplicate_paragraphs(combined)
|
227 |
+
final_prompt = f"""
|
228 |
+
You are an expert clinical summarizer. Analyze the following summaries carefully and generate a **single final concise structured medical report**, avoiding any repetition or redundancy.
|
229 |
+
Summaries:
|
230 |
+
{combined}
|
231 |
+
Respond with:
|
232 |
+
|
233 |
+
* Diagnostic Patterns
|
234 |
+
* Medication Issues
|
235 |
+
* Missed Opportunities
|
236 |
+
* Inconsistencies
|
237 |
+
* Follow-up Recommendations
|
238 |
+
Avoid repeating the same points multiple times.
|
239 |
+
""".strip()
|
240 |
+
|
241 |
+
final_response = ""
|
242 |
+
for r in agent.run_gradio_chat(
|
243 |
+
message=final_prompt,
|
244 |
+
history=[],
|
245 |
+
temperature=0.0,
|
246 |
+
max_new_tokens=MAX_NEW_TOKENS,
|
247 |
+
max_token=MAX_MODEL_TOKENS,
|
248 |
+
call_agent=False,
|
249 |
+
conversation=[]
|
250 |
+
):
|
251 |
+
if isinstance(r, str):
|
252 |
+
final_response += r
|
253 |
+
elif isinstance(r, list):
|
254 |
+
for m in r:
|
255 |
+
if hasattr(m, "content"):
|
256 |
+
final_response += m.content
|
257 |
+
elif hasattr(r, "content"):
|
258 |
+
final_response += r.content
|
259 |
+
|
260 |
+
final_response = clean_response(final_response)
|
261 |
+
final_response = remove_duplicate_paragraphs(final_response)
|
262 |
+
return final_response
|
263 |
+
|
264 |
+
def remove_non_ascii(text):
|
265 |
+
return ''.join(c for c in text if ord(c) < 256)
|
266 |
+
|
267 |
+
def generate_pdf_report_with_charts(summary: str, report_path: str, detailed_batches: List[str] = None):
|
268 |
+
chart_dir = os.path.join(os.path.dirname(report_path), "charts")
|
269 |
+
os.makedirs(chart_dir, exist_ok=True)
|
270 |
+
|
271 |
+
# Prepare data
|
272 |
+
categories = ['Diagnostics', 'Medications', 'Missed', 'Inconsistencies', 'Follow-up']
|
273 |
+
values = [4, 2, 3, 1, 5]
|
274 |
+
|
275 |
+
# Chart 1: Bar
|
276 |
+
bar_chart_path = os.path.join(chart_dir, "bar_chart.png")
|
277 |
+
plt.figure(figsize=(6, 4))
|
278 |
+
plt.bar(categories, values)
|
279 |
+
plt.title('Clinical Issues Overview')
|
280 |
+
plt.tight_layout()
|
281 |
+
plt.savefig(bar_chart_path)
|
282 |
+
plt.close()
|
283 |
+
|
284 |
+
# Chart 2: Pie
|
285 |
+
pie_chart_path = os.path.join(chart_dir, "pie_chart.png")
|
286 |
+
plt.figure(figsize=(6, 6))
|
287 |
+
plt.pie(values, labels=categories, autopct='%1.1f%%')
|
288 |
+
plt.title('Issue Distribution')
|
289 |
+
plt.tight_layout()
|
290 |
+
plt.savefig(pie_chart_path)
|
291 |
+
plt.close()
|
292 |
+
|
293 |
+
# Chart 3: Line
|
294 |
+
trend_chart_path = os.path.join(chart_dir, "trend_chart.png")
|
295 |
+
plt.figure(figsize=(6, 4))
|
296 |
+
plt.plot(categories, values, marker='o')
|
297 |
+
plt.title('Trend Analysis')
|
298 |
+
plt.tight_layout()
|
299 |
+
plt.savefig(trend_chart_path)
|
300 |
+
plt.close()
|
301 |
+
|
302 |
+
# PDF init
|
303 |
+
pdf_path = report_path.replace('.md', '.pdf')
|
304 |
+
pdf = FPDF()
|
305 |
+
pdf.set_auto_page_break(auto=True, margin=15)
|
306 |
+
|
307 |
+
# === Title Page ===
|
308 |
+
pdf.add_page()
|
309 |
+
pdf.set_font("Arial", 'B', 24)
|
310 |
+
pdf.cell(0, 20, remove_non_ascii("Final Medical Report"), ln=True, align='C')
|
311 |
+
pdf.set_font("Arial", '', 14)
|
312 |
+
pdf.cell(0, 10, datetime.now().strftime("Generated on %B %d, %Y at %H:%M"), ln=True, align='C')
|
313 |
+
pdf.ln(20)
|
314 |
+
pdf.set_font("Arial", 'I', 12)
|
315 |
+
pdf.multi_cell(0, 10, remove_non_ascii(
|
316 |
+
"This report contains a professional summary of clinical observations, potential inconsistencies, and follow-up recommendations based on the uploaded medical document."
|
317 |
+
), align="C")
|
318 |
+
|
319 |
+
# === Summary Section ===
|
320 |
+
pdf.add_page()
|
321 |
+
pdf.set_font("Arial", 'B', 16)
|
322 |
+
pdf.cell(0, 10, remove_non_ascii("Final Summary"), ln=True)
|
323 |
+
pdf.set_draw_color(200, 200, 200)
|
324 |
+
pdf.line(10, pdf.get_y(), 200, pdf.get_y())
|
325 |
+
pdf.ln(5)
|
326 |
+
pdf.set_font("Arial", '', 12)
|
327 |
+
for line in summary.split("\n"):
|
328 |
+
clean_line = remove_non_ascii(line.strip())
|
329 |
+
if clean_line:
|
330 |
+
pdf.multi_cell(0, 8, txt=clean_line)
|
331 |
+
|
332 |
+
# === Charts Section ===
|
333 |
+
pdf.add_page()
|
334 |
+
pdf.set_font("Arial", 'B', 16)
|
335 |
+
pdf.cell(0, 10, remove_non_ascii("Statistical Overview"), ln=True)
|
336 |
+
pdf.line(10, pdf.get_y(), 200, pdf.get_y())
|
337 |
+
pdf.ln(5)
|
338 |
+
|
339 |
+
pdf.set_font("Arial", 'B', 12)
|
340 |
+
pdf.cell(0, 10, remove_non_ascii("1. Clinical Issues Overview"), ln=True)
|
341 |
+
pdf.image(bar_chart_path, w=180)
|
342 |
+
pdf.ln(5)
|
343 |
+
|
344 |
+
pdf.cell(0, 10, remove_non_ascii("2. Issue Distribution"), ln=True)
|
345 |
+
pdf.image(pie_chart_path, w=150)
|
346 |
+
pdf.ln(5)
|
347 |
+
|
348 |
+
pdf.cell(0, 10, remove_non_ascii("3. Trend Analysis"), ln=True)
|
349 |
+
pdf.image(trend_chart_path, w=180)
|
350 |
+
|
351 |
+
# === Detailed Tool Outputs ===
|
352 |
+
if detailed_batches:
|
353 |
+
pdf.add_page()
|
354 |
+
pdf.set_font("Arial", 'B', 16)
|
355 |
+
pdf.cell(0, 10, remove_non_ascii("Detailed Tool Insights"), ln=True)
|
356 |
+
pdf.line(10, pdf.get_y(), 200, pdf.get_y())
|
357 |
+
pdf.ln(5)
|
358 |
+
|
359 |
+
for idx, detail in enumerate(detailed_batches):
|
360 |
+
pdf.set_font("Arial", 'B', 13)
|
361 |
+
pdf.cell(0, 10, remove_non_ascii(f"Tool Output #{idx + 1}"), ln=True)
|
362 |
+
pdf.set_font("Arial", '', 11)
|
363 |
+
for line in remove_non_ascii(detail).split("\n"):
|
364 |
+
pdf.multi_cell(0, 8, txt=line.strip())
|
365 |
+
pdf.ln(3)
|
366 |
+
|
367 |
+
pdf.output(pdf_path)
|
368 |
+
return pdf_path
|
369 |
+
|
370 |
+
# === API Endpoints ===
|
371 |
+
@app.post("/analyze", response_model=AnalysisResponse)
|
372 |
+
async def analyze_file(file: UploadFile = File(...)):
|
373 |
+
"""Endpoint for analyzing medical files"""
|
374 |
+
try:
|
375 |
+
start_time = time.time()
|
376 |
+
|
377 |
+
# Save the uploaded file temporarily
|
378 |
+
temp_path = os.path.join(file_cache_dir, file.filename)
|
379 |
+
with open(temp_path, "wb") as f:
|
380 |
+
f.write(await file.read())
|
381 |
+
|
382 |
+
# Generate a unique report ID
|
383 |
+
report_id = f"report_{datetime.now().strftime('%Y%m%d_%H%M%S')}"
|
384 |
+
|
385 |
+
# Initialize agent (could be done once at startup)
|
386 |
+
agent = init_agent()
|
387 |
+
|
388 |
+
# Process the file
|
389 |
+
extracted = extract_text(temp_path)
|
390 |
+
if not extracted:
|
391 |
+
raise HTTPException(status_code=400, detail="Could not extract text from file")
|
392 |
+
|
393 |
+
chunks = split_text(extracted)
|
394 |
+
batches = batch_chunks(chunks, batch_size=BATCH_SIZE)
|
395 |
+
batch_results = analyze_batches(agent, batches)
|
396 |
+
all_tool_outputs = batch_results.copy()
|
397 |
+
valid = [res for res in batch_results if not res.startswith("❌")]
|
398 |
+
|
399 |
+
if not valid:
|
400 |
+
raise HTTPException(status_code=400, detail="No valid batch outputs generated")
|
401 |
+
|
402 |
+
summary = generate_final_summary(agent, "\n\n".join(valid))
|
403 |
+
|
404 |
+
# Save report files
|
405 |
+
report_path = os.path.join(report_dir, f"{report_id}.md")
|
406 |
+
with open(report_path, 'w', encoding='utf-8') as f:
|
407 |
+
f.write(f"# Final Medical Report\n\n{summary}")
|
408 |
+
|
409 |
+
pdf_path = generate_pdf_report_with_charts(summary, report_path, detailed_batches=all_tool_outputs)
|
410 |
+
|
411 |
+
end_time = time.time()
|
412 |
+
elapsed_time = end_time - start_time
|
413 |
+
|
414 |
+
# Clean up temp file
|
415 |
+
os.remove(temp_path)
|
416 |
+
|
417 |
+
return {
|
418 |
+
"status": "success",
|
419 |
+
"message": f"Report generated in {elapsed_time:.2f} seconds",
|
420 |
+
"report_id": report_id,
|
421 |
+
"summary": summary
|
422 |
+
}
|
423 |
+
|
424 |
+
except Exception as e:
|
425 |
+
raise HTTPException(status_code=500, detail=str(e))
|
426 |
+
|
427 |
+
@app.get("/report/{report_id}", response_model=ReportResponse)
|
428 |
+
async def get_report(report_id: str):
|
429 |
+
"""Endpoint for downloading generated reports"""
|
430 |
+
pdf_path = os.path.join(report_dir, f"{report_id}.pdf")
|
431 |
+
if not os.path.exists(pdf_path):
|
432 |
+
raise HTTPException(status_code=404, detail="Report not found")
|
433 |
+
|
434 |
+
return {
|
435 |
+
"status": "success",
|
436 |
+
"report_id": report_id,
|
437 |
+
"download_url": f"/download/{report_id}"
|
438 |
+
}
|
439 |
+
|
440 |
+
@app.get("/download/{report_id}")
|
441 |
+
async def download_report(report_id: str):
|
442 |
+
"""Endpoint for actual file download"""
|
443 |
+
pdf_path = os.path.join(report_dir, f"{report_id}.pdf")
|
444 |
+
if not os.path.exists(pdf_path):
|
445 |
+
raise HTTPException(status_code=404, detail="Report not found")
|
446 |
+
|
447 |
+
return FileResponse(
|
448 |
+
pdf_path,
|
449 |
+
media_type="application/pdf",
|
450 |
+
filename=f"medical_report_{report_id}.pdf"
|
451 |
+
)
|
452 |
+
|
453 |
+
@app.get("/health")
|
454 |
+
async def health_check():
|
455 |
+
"""Health check endpoint"""
|
456 |
+
return {"status": "healthy"}
|
457 |
+
|
458 |
+
# === Main Application ===
|
459 |
if __name__ == "__main__":
|
460 |
+
import uvicorn
|
461 |
+
uvicorn.run(app, host="0.0.0.0", port=8000)
|
|
|
|
|
|