CPS-Test-Mobile / app.py
Ali2206's picture
Update app.py
b929a03 verified
raw
history blame
10.4 kB
import sys
import os
import pandas as pd
import json
import gradio as gr
from typing import List, Tuple, Dict, Any, Union
import hashlib
import shutil
import re
from datetime import datetime
import time
from concurrent.futures import ThreadPoolExecutor, as_completed
# Configuration and setup
persistent_dir = "/data/hf_cache"
os.makedirs(persistent_dir, exist_ok=True)
model_cache_dir = os.path.join(persistent_dir, "txagent_models")
tool_cache_dir = os.path.join(persistent_dir, "tool_cache")
file_cache_dir = os.path.join(persistent_dir, "cache")
report_dir = os.path.join(persistent_dir, "reports")
for directory in [model_cache_dir, tool_cache_dir, file_cache_dir, report_dir]:
os.makedirs(directory, exist_ok=True)
os.environ["HF_HOME"] = model_cache_dir
os.environ["TRANSFORMERS_CACHE"] = model_cache_dir
current_dir = os.path.dirname(os.path.abspath(__file__))
src_path = os.path.abspath(os.path.join(current_dir, "src"))
sys.path.insert(0, src_path)
from txagent.txagent import TxAgent
MAX_MODEL_TOKENS = 32768
MAX_CHUNK_TOKENS = 8192
MAX_NEW_TOKENS = 2048
PROMPT_OVERHEAD = 500
def clean_response(text: str) -> str:
try:
text = text.encode('utf-8', 'surrogatepass').decode('utf-8')
except UnicodeError:
text = text.encode('utf-8', 'replace').decode('utf-8')
text = re.sub(r"\[.*?\]|\bNone\b", "", text, flags=re.DOTALL)
text = re.sub(r"\n{3,}", "\n\n", text)
text = re.sub(r"[^\n#\-\*\w\s\.,:\(\)]+", "", text)
return text.strip()
def estimate_tokens(text: str) -> int:
return len(text) // 3.5 + 1
def extract_text_from_excel(file_path: str) -> str:
all_text = []
try:
xls = pd.ExcelFile(file_path)
for sheet_name in xls.sheet_names:
df = xls.parse(sheet_name)
df = df.astype(str).fillna("")
rows = df.apply(lambda row: " | ".join(row), axis=1)
sheet_text = [f"[{sheet_name}] {line}" for line in rows]
all_text.extend(sheet_text)
except Exception as e:
raise ValueError(f"Failed to extract text from Excel file: {str(e)}")
return "\n".join(all_text)
def split_text_into_chunks(text: str, max_tokens: int = MAX_CHUNK_TOKENS) -> List[str]:
effective_max_tokens = max_tokens - PROMPT_OVERHEAD
if effective_max_tokens <= 0:
raise ValueError("Effective max tokens must be positive.")
lines = text.split("\n")
chunks, current_chunk, current_tokens = [], [], 0
for line in lines:
line_tokens = estimate_tokens(line)
if current_tokens + line_tokens > effective_max_tokens:
if current_chunk:
chunks.append("\n".join(current_chunk))
current_chunk, current_tokens = [line], line_tokens
else:
current_chunk.append(line)
current_tokens += line_tokens
if current_chunk:
chunks.append("\n".join(current_chunk))
return chunks
def build_prompt_from_text(chunk: str) -> str:
return f"""
### Unstructured Clinical Records
Analyze the following clinical notes and provide a detailed, concise summary focusing on:
- Diagnostic Patterns
- Medication Issues
- Missed Opportunities
- Inconsistencies
- Follow-up Recommendations
---
{chunk}
---
Respond in well-structured bullet points with medical reasoning.
"""
def init_agent():
default_tool_path = os.path.abspath("data/new_tool.json")
target_tool_path = os.path.join(tool_cache_dir, "new_tool.json")
if not os.path.exists(target_tool_path):
shutil.copy(default_tool_path, target_tool_path)
agent = TxAgent(
model_name="mims-harvard/TxAgent-T1-Llama-3.1-8B",
rag_model_name="mims-harvard/ToolRAG-T1-GTE-Qwen2-1.5B",
tool_files_dict={"new_tool": target_tool_path},
force_finish=True,
enable_checker=True,
step_rag_num=4,
seed=100,
additional_default_tools=[]
)
agent.init_model()
return agent
def process_final_report(agent, file, chatbot_state: List[Dict[str, str]]) -> Tuple[List[Dict[str, str]], Union[str, None]]:
messages = chatbot_state if chatbot_state else []
report_path = None
if file is None or not hasattr(file, "name"):
messages.append({"role": "assistant", "content": "❌ Please upload a valid Excel file before analyzing."})
return messages, report_path
try:
messages.append({"role": "user", "content": f"Processing Excel file: {os.path.basename(file.name)}"})
extracted_text = extract_text_from_excel(file.name)
chunks = split_text_into_chunks(extracted_text)
chunk_responses = [None] * len(chunks)
def analyze_chunk(index: int, chunk: str) -> Tuple[int, str]:
prompt = build_prompt_from_text(chunk)
prompt_tokens = estimate_tokens(prompt)
if prompt_tokens > MAX_MODEL_TOKENS:
return index, f"❌ Chunk {index+1} prompt too long. Skipping..."
response = ""
try:
for result in agent.run_gradio_chat(
message=prompt,
history=[],
temperature=0.2,
max_new_tokens=MAX_NEW_TOKENS,
max_token=MAX_MODEL_TOKENS,
call_agent=False,
conversation=[],
):
if isinstance(result, str):
response += result
elif isinstance(result, list):
for r in result:
if hasattr(r, "content"):
response += r.content
elif hasattr(result, "content"):
response += result.content
except Exception as e:
return index, f"❌ Error analyzing chunk {index+1}: {str(e)}"
return index, clean_response(response)
with ThreadPoolExecutor(max_workers=1) as executor:
futures = [executor.submit(analyze_chunk, i, chunk) for i, chunk in enumerate(chunks)]
for future in as_completed(futures):
i, result = future.result()
chunk_responses[i] = result
if result.startswith("❌"):
messages.append({"role": "assistant", "content": result})
valid_responses = [res for res in chunk_responses if not res.startswith("❌")]
if not valid_responses:
messages.append({"role": "assistant", "content": "❌ No valid chunk responses to summarize."})
return messages, report_path
summary = "\n\n".join(valid_responses)
final_prompt = f"Provide a structured, consolidated clinical analysis from these results:\n\n{summary}"
messages.append({"role": "assistant", "content": "πŸ“Š Generating final report..."})
final_report_text = ""
for result in agent.run_gradio_chat(
message=final_prompt,
history=[],
temperature=0.2,
max_new_tokens=MAX_NEW_TOKENS,
max_token=MAX_MODEL_TOKENS,
call_agent=False,
conversation=[],
):
if isinstance(result, str):
final_report_text += result
elif isinstance(result, list):
for r in result:
if hasattr(r, "content"):
final_report_text += r.content
elif hasattr(result, "content"):
final_report_text += result.content
cleaned = clean_response(final_report_text)
report_path = os.path.join(report_dir, f"report_{datetime.now().strftime('%Y%m%d_%H%M%S')}.md")
with open(report_path, 'w') as f:
f.write(f"# 🧠 Final Patient Report\n\n{cleaned}")
messages.append({"role": "assistant", "content": f"πŸ“Š Final Report:\n\n{cleaned}"})
messages.append({"role": "assistant", "content": f"βœ… Report generated and saved: {os.path.basename(report_path)}"})
except Exception as e:
messages.append({"role": "assistant", "content": f"❌ Error processing file: {str(e)}"})
return messages, report_path
def create_ui(agent):
with gr.Blocks(css="""
html, body, .gradio-container {
height: 100vh;
width: 100vw;
padding: 0;
margin: 0;
font-family: 'Inter', sans-serif;
background: #ffffff;
}
.gr-button.primary {
background: #1e88e5;
color: #fff;
border: none;
border-radius: 6px;
font-weight: 600;
}
.gr-button.primary:hover {
background: #1565c0;
}
.gr-chatbot {
border: 1px solid #e0e0e0;
background: #f9f9f9;
border-radius: 10px;
padding: 1rem;
font-size: 15px;
}
.gr-markdown, .gr-file-upload {
background: #ffffff;
border-radius: 8px;
box-shadow: 0 1px 3px rgba(0,0,0,0.08);
}
""") as demo:
gr.Markdown("""
<h2 style='color:#1e88e5'>🩺 Patient History AI Assistant</h2>
<p>Upload a clinical Excel file and receive an advanced diagnostic summary.</p>
""")
with gr.Row():
with gr.Column(scale=3):
chatbot = gr.Chatbot(label="Clinical Assistant", height=700, type="messages")
with gr.Column(scale=1):
file_upload = gr.File(label="Upload Excel File", file_types=[".xlsx"])
analyze_btn = gr.Button("🧠 Analyze", variant="primary")
report_output = gr.File(label="Download Report", visible=False, interactive=False)
chatbot_state = gr.State(value=[])
def update_ui(file, current_state):
messages, report_path = process_final_report(agent, file, current_state)
return messages, gr.update(visible=report_path is not None, value=report_path), messages
analyze_btn.click(fn=update_ui, inputs=[file_upload, chatbot_state], outputs=[chatbot, report_output, chatbot_state])
return demo
if __name__ == "__main__":
try:
agent = init_agent()
demo = create_ui(agent)
demo.launch(server_name="0.0.0.0", server_port=7860, allowed_paths=["/data/hf_cache/reports"], share=False)
except Exception as e:
print(f"Error: {str(e)}")
sys.exit(1)