|
import sys |
|
import os |
|
import pandas as pd |
|
import pdfplumber |
|
import gradio as gr |
|
from typing import List |
|
|
|
|
|
sys.path.insert(0, os.path.abspath(os.path.join(os.path.dirname(__file__), "..", "src"))) |
|
|
|
from txagent.txagent import TxAgent |
|
|
|
def sanitize_utf8(text: str) -> str: |
|
return text.encode("utf-8", "ignore").decode("utf-8") |
|
|
|
def clean_final_response(text: str) -> str: |
|
cleaned = text.replace("[TOOL_CALLS]", "").strip() |
|
sections = cleaned.split("[Final Analysis]") |
|
if len(sections) > 1: |
|
final = sections[1].strip() |
|
formatted_final = final.replace("\n", "</li><li style='margin-bottom:0.75em;'>") |
|
return ( |
|
"<div style='padding:1em;border:2px solid #4B4CED;background:#242C3B;border-radius:12px;color:#fff;'>" |
|
"<h3 style='margin-top:0;color:#37B6E9;'>🧠 Final Analysis</h3>" |
|
f"<ul><li style='margin-bottom:0.75em;'>{formatted_final}</li></ul>" |
|
"</div>" |
|
) |
|
return f"<div style='padding:1em;border:1px solid #ccc;border-radius:12px;color:#fff;background:#353F54;'><p>{cleaned}</p></div>" |
|
|
|
def extract_all_text_from_csv_or_excel(file_path: str, progress=None, index=0, total=1) -> str: |
|
try: |
|
if not os.path.exists(file_path): |
|
return f"File not found: {file_path}" |
|
|
|
if progress: |
|
progress((index + 1) / total, desc=f"Reading spreadsheet: {os.path.basename(file_path)}") |
|
|
|
if file_path.endswith(".csv"): |
|
df = pd.read_csv(file_path, encoding="utf-8", errors="replace", low_memory=False) |
|
elif file_path.endswith((".xls", ".xlsx")): |
|
try: |
|
df = pd.read_excel(file_path, engine="openpyxl") |
|
except: |
|
df = pd.read_excel(file_path, engine="xlrd") |
|
else: |
|
return f"Unsupported spreadsheet format: {file_path}" |
|
|
|
lines = [] |
|
for _, row in df.iterrows(): |
|
line = " | ".join(str(cell) for cell in row if pd.notna(cell)) |
|
if line: |
|
lines.append(line) |
|
return f"\U0001F4C4 {os.path.basename(file_path)}\n\n" + "\n".join(lines) |
|
|
|
except Exception as e: |
|
return f"[Error reading {os.path.basename(file_path)}]: {str(e)}" |
|
|
|
def extract_all_text_from_pdf(file_path: str, progress=None, index=0, total=1) -> str: |
|
try: |
|
if not os.path.exists(file_path): |
|
return f"PDF not found: {file_path}" |
|
|
|
extracted = [] |
|
with pdfplumber.open(file_path) as pdf: |
|
num_pages = len(pdf.pages) |
|
for i, page in enumerate(pdf.pages): |
|
try: |
|
text = page.extract_text() or "" |
|
extracted.append(text.strip()) |
|
if progress: |
|
progress((index + (i / num_pages)) / total, desc=f"Reading PDF: {os.path.basename(file_path)} ({i+1}/{num_pages})") |
|
except Exception as e: |
|
extracted.append(f"[Error reading page {i+1}]: {str(e)}") |
|
return f"\U0001F4C4 {os.path.basename(file_path)}\n\n" + "\n\n".join(extracted) |
|
|
|
except Exception as e: |
|
return f"[Error reading PDF {os.path.basename(file_path)}]: {str(e)}" |
|
|
|
def chunk_text(text: str, max_tokens: int = 8192) -> List[str]: |
|
chunks = [] |
|
words = text.split() |
|
chunk = [] |
|
token_count = 0 |
|
for word in words: |
|
token_count += len(word) // 4 + 1 |
|
if token_count > max_tokens: |
|
chunks.append(" ".join(chunk)) |
|
chunk = [word] |
|
token_count = len(word) // 4 + 1 |
|
else: |
|
chunk.append(word) |
|
if chunk: |
|
chunks.append(" ".join(chunk)) |
|
return chunks |
|
|
|
def create_ui(agent: TxAgent): |
|
with gr.Blocks(theme=gr.themes.Soft()) as demo: |
|
gr.Markdown("<h1 style='text-align: center;'>\U0001F4CB CPS: Clinical Patient Support System</h1>") |
|
|
|
chatbot = gr.Chatbot(label="CPS Assistant", height=600, type="tuples") |
|
file_upload = gr.File( |
|
label="Upload Medical File", |
|
file_types=[".pdf", ".txt", ".docx", ".jpg", ".png", ".csv", ".xls", ".xlsx"], |
|
file_count="multiple" |
|
) |
|
message_input = gr.Textbox(placeholder="Ask a biomedical question or just upload the files...", show_label=False) |
|
send_button = gr.Button("Send", variant="primary") |
|
conversation_state = gr.State([]) |
|
|
|
def handle_chat(message: str, history: list, conversation: list, uploaded_files: list, progress=gr.Progress()): |
|
context = ( |
|
"You are an expert clinical AI assistant reviewing medical form or interview data. " |
|
"Your job is to analyze this data and reason about any information or red flags that a human doctor might have overlooked. " |
|
"Provide a **detailed and structured response**, including examples, supporting evidence from the form, and clinical rationale for why these items matter. " |
|
"Ensure the output is informative and helpful for improving patient care. " |
|
"Do not hallucinate. Base the response only on the provided form content. " |
|
"End with a section labeled '[Final Analysis]' where you summarize key findings the doctor may have missed." |
|
) |
|
|
|
try: |
|
history.append((message, "⏳ Processing your request...")) |
|
yield history |
|
|
|
extracted_text = "" |
|
if uploaded_files and isinstance(uploaded_files, list): |
|
total_files = len(uploaded_files) |
|
for index, file in enumerate(uploaded_files): |
|
if not hasattr(file, 'name'): |
|
continue |
|
path = file.name |
|
try: |
|
if path.endswith((".csv", ".xls", ".xlsx")): |
|
extracted_text += extract_all_text_from_csv_or_excel(path, progress, index, total_files) + "\n" |
|
elif path.endswith(".pdf"): |
|
extracted_text += extract_all_text_from_pdf(path, progress, index, total_files) + "\n" |
|
else: |
|
extracted_text += f"(Uploaded file: {os.path.basename(path)})\n" |
|
except Exception as file_error: |
|
extracted_text += f"[Error processing {os.path.basename(path)}]: {str(file_error)}\n" |
|
|
|
sanitized = sanitize_utf8(extracted_text.strip()) |
|
chunks = chunk_text(sanitized) |
|
|
|
full_response = "" |
|
for i, chunk in enumerate(chunks): |
|
chunked_prompt = ( |
|
f"{context}\n\n--- Uploaded File Content (Chunk {i+1}/{len(chunks)}) ---\n\n{chunk}\n\n" |
|
f"--- End of Chunk ---\n\nNow begin your analysis:" |
|
) |
|
|
|
generator = agent.run_gradio_chat( |
|
message=chunked_prompt, |
|
history=[], |
|
temperature=0.3, |
|
max_new_tokens=1024, |
|
max_token=8192, |
|
call_agent=False, |
|
conversation=conversation, |
|
uploaded_files=uploaded_files, |
|
max_round=30 |
|
) |
|
|
|
chunk_response = "" |
|
for update in generator: |
|
if isinstance(update, str): |
|
chunk_response += update |
|
elif isinstance(update, list): |
|
for msg in update: |
|
if hasattr(msg, 'content'): |
|
chunk_response += msg.content |
|
|
|
full_response += chunk_response + "\n\n" |
|
|
|
full_response = clean_final_response(full_response.strip()) |
|
history[-1] = (message, full_response) |
|
yield history |
|
|
|
except Exception as chat_error: |
|
print(f"Chat handling error: {chat_error}") |
|
error_msg = "An error occurred while processing your request. Please try again." |
|
if len(history) > 0 and history[-1][1].startswith("⏳"): |
|
history[-1] = (history[-1][0], error_msg) |
|
else: |
|
history.append((message, error_msg)) |
|
yield history |
|
|
|
inputs = [message_input, chatbot, conversation_state, file_upload] |
|
send_button.click(fn=handle_chat, inputs=inputs, outputs=chatbot) |
|
message_input.submit(fn=handle_chat, inputs=inputs, outputs=chatbot) |
|
|
|
gr.Examples([ |
|
["Upload your medical form and ask what the doctor might've missed."], |
|
["This patient was treated with antibiotics for UTI. What else should we check?"], |
|
["Is there anything abnormal in the attached blood work report?"] |
|
], inputs=message_input) |
|
|
|
return demo |
|
|