|
import sys |
|
import os |
|
import pandas as pd |
|
import pdfplumber |
|
import json |
|
import gradio as gr |
|
from typing import List |
|
from concurrent.futures import ThreadPoolExecutor, as_completed |
|
import hashlib |
|
import shutil |
|
|
|
|
|
sys.path.insert(0, os.path.abspath(os.path.join(os.path.dirname(__file__), "..", "src"))) |
|
|
|
|
|
model_cache_dir = "/data/txagent_models" |
|
os.makedirs(model_cache_dir, exist_ok=True) |
|
os.environ["TRANSFORMERS_CACHE"] = model_cache_dir |
|
os.environ["HF_HOME"] = model_cache_dir |
|
|
|
from txagent.txagent import TxAgent |
|
|
|
def sanitize_utf8(text: str) -> str: |
|
return text.encode("utf-8", "ignore").decode("utf-8") |
|
|
|
def file_hash(path): |
|
with open(path, "rb") as f: |
|
return hashlib.md5(f.read()).hexdigest() |
|
|
|
def convert_file_to_json(file_path: str, file_type: str) -> str: |
|
try: |
|
cache_dir = "/data/cache" |
|
os.makedirs(cache_dir, exist_ok=True) |
|
h = file_hash(file_path) |
|
cache_path = os.path.join(cache_dir, f"{h}.json") |
|
|
|
if os.path.exists(cache_path): |
|
return open(cache_path, "r", encoding="utf-8").read() |
|
|
|
if file_type == "csv": |
|
df = pd.read_csv(file_path, encoding_errors="replace", header=None, dtype=str, skip_blank_lines=False, on_bad_lines="skip") |
|
elif file_type in ["xls", "xlsx"]: |
|
try: |
|
df = pd.read_excel(file_path, engine="openpyxl", header=None, dtype=str) |
|
except: |
|
df = pd.read_excel(file_path, engine="xlrd", header=None, dtype=str) |
|
elif file_type == "pdf": |
|
with pdfplumber.open(file_path) as pdf: |
|
text = "\n".join([page.extract_text() or "" for page in pdf.pages]) |
|
result = json.dumps({"filename": os.path.basename(file_path), "content": text.strip()}) |
|
open(cache_path, "w", encoding="utf-8").write(result) |
|
return result |
|
else: |
|
return json.dumps({"error": f"Unsupported file type: {file_type}"}) |
|
|
|
if df is None or df.empty: |
|
return json.dumps({"warning": f"No data extracted from: {file_path}"}) |
|
|
|
df = df.fillna("") |
|
content = df.astype(str).values.tolist() |
|
result = json.dumps({"filename": os.path.basename(file_path), "rows": content}) |
|
open(cache_path, "w", encoding="utf-8").write(result) |
|
return result |
|
except Exception as e: |
|
return json.dumps({"error": f"Error reading {os.path.basename(file_path)}: {str(e)}"}) |
|
|
|
def create_ui(agent: TxAgent): |
|
with gr.Blocks(theme=gr.themes.Soft()) as demo: |
|
gr.Markdown("<h1 style='text-align: center;'>π CPS: Clinical Patient Support System</h1>") |
|
|
|
chatbot = gr.Chatbot(label="CPS Assistant", height=600, type="messages") |
|
file_upload = gr.File( |
|
label="Upload Medical File", |
|
file_types=[".pdf", ".txt", ".docx", ".jpg", ".png", ".csv", ".xls", ".xlsx"], |
|
file_count="multiple" |
|
) |
|
message_input = gr.Textbox(placeholder="Ask a biomedical question or just upload the files...", show_label=False) |
|
send_button = gr.Button("Send", variant="primary") |
|
conversation_state = gr.State([]) |
|
|
|
def handle_chat(message: str, history: list, conversation: list, uploaded_files: list, progress=gr.Progress()): |
|
try: |
|
history.append({"role": "user", "content": message}) |
|
history.append({"role": "assistant", "content": "β³ Processing your request..."}) |
|
yield history |
|
|
|
extracted_text = "" |
|
if uploaded_files and isinstance(uploaded_files, list): |
|
for file in uploaded_files: |
|
if not hasattr(file, 'name'): |
|
continue |
|
path = file.name |
|
ext = path.split(".")[-1].lower() |
|
json_text = convert_file_to_json(path, ext) |
|
extracted_text += sanitize_utf8(json_text) + "\n" |
|
|
|
|
|
context = ( |
|
"You are an expert clinical AI assistant. Review this patient's history, medications, and notes, and ONLY provide a final answer summarizing what the doctor might have missed." |
|
) |
|
|
|
chunked_prompt = f"{context}\n\n--- Patient Record ---\n{extracted_text}\n\n[Final Analysis]" |
|
|
|
generator = agent.run_gradio_chat( |
|
message=chunked_prompt, |
|
history=[], |
|
temperature=0.3, |
|
max_new_tokens=1024, |
|
max_token=8192, |
|
call_agent=False, |
|
conversation=conversation, |
|
uploaded_files=uploaded_files, |
|
max_round=30 |
|
) |
|
|
|
final_response = "" |
|
for update in generator: |
|
if update is None: |
|
continue |
|
if isinstance(update, str): |
|
final_response += update |
|
elif isinstance(update, list): |
|
for msg in update: |
|
if hasattr(msg, 'content'): |
|
final_response += msg.content |
|
|
|
history[-1] = {"role": "assistant", "content": final_response.strip() or "β No response."} |
|
yield history |
|
|
|
except Exception as chat_error: |
|
print(f"Chat handling error: {chat_error}") |
|
history[-1] = {"role": "assistant", "content": "β An error occurred while processing your request."} |
|
yield history |
|
|
|
inputs = [message_input, chatbot, conversation_state, file_upload] |
|
send_button.click(fn=handle_chat, inputs=inputs, outputs=chatbot) |
|
message_input.submit(fn=handle_chat, inputs=inputs, outputs=chatbot) |
|
|
|
gr.Examples([ |
|
["Upload your medical form and ask what the doctor might've missed."], |
|
["This patient was treated with antibiotics for UTI. What else should we check?"], |
|
["Is there anything abnormal in the attached blood work report?"] |
|
], inputs=message_input) |
|
|
|
return demo |