Rob Caamano
Update app.py
c21236a unverified
raw
history blame
1.61 kB
import streamlit as st
from transformers import AutoTokenizer
from transformers import (
TFAutoModelForSequenceClassification as AutoModelForSequenceClassification,
)
from transformers import pipeline
st.title("Toxic Tweet Classifier")
demo = """Your words are like poison. They seep into my mind and make me feel worthless."""
text = ""
submit = False
model_name = ""
col1, col2, col3 = st.columns([2,1,1])
with st.container():
model_name = st.selectbox(
"Select the model you want to use below.",
("RobCaamano/toxicity",),
)
submit = st.button("Submit", type="primary")
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForSequenceClassification.from_pretrained(model_name)
clf = pipeline(
"sentiment-analysis", model=model, tokenizer=tokenizer, return_all_scores=True
)
with col1:
st.subheader("Tweet")
text = st.text_area("Input text", demo, height=275)
with col2:
st.subheader("Classification")
with col3:
st.subheader("Probability")
input = tokenizer(text, return_tensors="tf")
if submit:
results = dict(d.values() for d in clf(text)[0])
classes = {k: results[k] for k in results.keys() if not k == "toxic"}
max_class = max(classes, key=classes.get)
with col2:
st.write(f"#### {max_class}")
with col3:
st.write(f"#### **{classes[max_class]:.2f}%**")
if results["toxic"] < 0.5:
st.success("This tweet is unlikely to be be toxic!")
else:
st.warning('This tweet is likely to be toxic.')
expander = st.expander("Raw output")
expander.write(results)