Spaces:
Runtime error
Runtime error
File size: 1,612 Bytes
fd77815 682174e fd77815 682174e 29406f8 682174e fd77815 cb4608c fd77815 682174e fd77815 682174e 08728c1 528da04 682174e 39e1615 4a0592e 682174e 4a0592e fd77815 682174e 39e1615 682174e 2d942ee 682174e cb4608c 682174e c21236a 7b977eb c21236a 682174e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 |
import streamlit as st
from transformers import AutoTokenizer
from transformers import (
TFAutoModelForSequenceClassification as AutoModelForSequenceClassification,
)
from transformers import pipeline
st.title("Toxic Tweet Classifier")
demo = """Your words are like poison. They seep into my mind and make me feel worthless."""
text = ""
submit = False
model_name = ""
col1, col2, col3 = st.columns([2,1,1])
with st.container():
model_name = st.selectbox(
"Select the model you want to use below.",
("RobCaamano/toxicity",),
)
submit = st.button("Submit", type="primary")
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForSequenceClassification.from_pretrained(model_name)
clf = pipeline(
"sentiment-analysis", model=model, tokenizer=tokenizer, return_all_scores=True
)
with col1:
st.subheader("Tweet")
text = st.text_area("Input text", demo, height=275)
with col2:
st.subheader("Classification")
with col3:
st.subheader("Probability")
input = tokenizer(text, return_tensors="tf")
if submit:
results = dict(d.values() for d in clf(text)[0])
classes = {k: results[k] for k in results.keys() if not k == "toxic"}
max_class = max(classes, key=classes.get)
with col2:
st.write(f"#### {max_class}")
with col3:
st.write(f"#### **{classes[max_class]:.2f}%**")
if results["toxic"] < 0.5:
st.success("This tweet is unlikely to be be toxic!")
else:
st.warning('This tweet is likely to be toxic.')
expander = st.expander("Raw output")
expander.write(results)
|