Rob Caamano
commited on
App TEST
Browse files
app.py
CHANGED
@@ -1,56 +1,61 @@
|
|
1 |
import streamlit as st
|
2 |
-
|
3 |
-
from transformers import AutoTokenizer, pipeline
|
4 |
from transformers import (
|
5 |
TFAutoModelForSequenceClassification as AutoModelForSequenceClassification,
|
6 |
)
|
|
|
7 |
|
8 |
-
st.title("
|
9 |
|
10 |
demo = """Your words are like poison. They seep into my mind and make me feel worthless."""
|
11 |
|
12 |
-
text =
|
|
|
|
|
|
|
13 |
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
|
|
19 |
|
20 |
-
|
21 |
-
|
22 |
-
tokenizer = AutoTokenizer.from_pretrained(mod_name)
|
23 |
-
model = AutoModelForSequenceClassification.from_pretrained(mod_name)
|
24 |
clf = pipeline(
|
25 |
"sentiment-analysis", model=model, tokenizer=tokenizer, return_all_scores=True
|
26 |
)
|
27 |
|
28 |
-
|
29 |
-
|
30 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
31 |
|
32 |
-
def get_most_toxic_class(predictions):
|
33 |
-
return {model.config.id2label[i]: pred for i, pred in enumerate(predictions)}
|
34 |
|
35 |
input = tokenizer(text, return_tensors="tf")
|
36 |
|
37 |
-
if
|
38 |
results = dict(d.values() for d in clf(text)[0])
|
39 |
-
|
|
|
|
|
|
|
|
|
|
|
40 |
|
41 |
-
|
|
|
42 |
|
43 |
-
if
|
44 |
-
st.
|
45 |
else:
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
{
|
51 |
-
"Text (portion)": [tweet_portion],
|
52 |
-
"Toxicity Class": [max_toxic_class],
|
53 |
-
"Probability": [max_probability],
|
54 |
-
}
|
55 |
-
)
|
56 |
-
st.table(df)
|
|
|
1 |
import streamlit as st
|
2 |
+
from transformers import AutoTokenizer
|
|
|
3 |
from transformers import (
|
4 |
TFAutoModelForSequenceClassification as AutoModelForSequenceClassification,
|
5 |
)
|
6 |
+
from transformers import pipeline
|
7 |
|
8 |
+
st.title("Toxic Tweet Classifier")
|
9 |
|
10 |
demo = """Your words are like poison. They seep into my mind and make me feel worthless."""
|
11 |
|
12 |
+
text = ""
|
13 |
+
submit = False
|
14 |
+
model_name = ""
|
15 |
+
col1, col2, col3 = st.columns([2,1,1])
|
16 |
|
17 |
+
with st.container():
|
18 |
+
model_name = st.selectbox(
|
19 |
+
"Select the model you want to use below.",
|
20 |
+
("RobCaamano/toxicity",),
|
21 |
+
)
|
22 |
+
submit = st.button("Submit", type="primary", use_container_width=True)
|
23 |
|
24 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
25 |
+
model = AutoModelForSequenceClassification.from_pretrained(model_name)
|
|
|
|
|
26 |
clf = pipeline(
|
27 |
"sentiment-analysis", model=model, tokenizer=tokenizer, return_all_scores=True
|
28 |
)
|
29 |
|
30 |
+
with col1:
|
31 |
+
st.subheader("Tweet")
|
32 |
+
text = st.text_area("Input text", demo, height=275)
|
33 |
+
|
34 |
+
with col2:
|
35 |
+
st.subheader("Classification")
|
36 |
+
|
37 |
+
with col3:
|
38 |
+
st.subheader("Probability")
|
39 |
|
|
|
|
|
40 |
|
41 |
input = tokenizer(text, return_tensors="tf")
|
42 |
|
43 |
+
if submit:
|
44 |
results = dict(d.values() for d in clf(text)[0])
|
45 |
+
classes = {k: results[k] for k in results.keys() if not k == "toxic"}
|
46 |
+
|
47 |
+
max_class = max(classes, key=classes.get)
|
48 |
+
|
49 |
+
with col2:
|
50 |
+
st.write(f"#### {max_class}")
|
51 |
|
52 |
+
with col3:
|
53 |
+
st.write(f"#### **{classes[max_class]:.2f}%**")
|
54 |
|
55 |
+
if results["toxic"] < 0.5:
|
56 |
+
st.success("This tweet is unlikely to be be toxic!", icon=":white_check_mark:")
|
57 |
else:
|
58 |
+
st.warning('This tweet is likely to be toxic.', icon=":warning:")
|
59 |
+
|
60 |
+
expander = st.expander("Raw output")
|
61 |
+
expander.write(results)
|
|
|
|
|
|
|
|
|
|
|
|
|
|