Spaces:
Runtime error
Runtime error
File size: 1,862 Bytes
fd77815 528da04 03f4672 fd77815 29406f8 fd77815 cb4608c fd77815 528da04 2db0396 528da04 fd77815 390d16b 4a0592e 2d942ee 4a0592e c518343 fd77815 84bfc73 fd77815 4388ac9 395b5b7 2d942ee 395b5b7 2d942ee 395b5b7 2d942ee cb4608c 1167df7 cb4608c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 |
import streamlit as st
import pandas as pd
from transformers import AutoTokenizer
from transformers import (
TFAutoModelForSequenceClassification as AutoModelForSequenceClassification,
)
st.title("Detecting Toxic Tweets")
demo = """Your words are like poison. They seep into my mind and make me feel worthless."""
text = st.text_area("Input text", demo, height=250)
model_options = {
"DistilBERT Base Uncased (SST-2)": "distilbert-base-uncased-finetuned-sst-2-english",
"Fine-tuned Toxicity Model": "RobCaamano/toxicity_distilbert",
}
selected_model = st.selectbox("Select Model", options=list(model_options.keys()))
mod_name = model_options[selected_model]
tokenizer = AutoTokenizer.from_pretrained(mod_name)
model = AutoModelForSequenceClassification.from_pretrained(mod_name)
if selected_model == "Fine-tuned Toxicity Model":
toxicity_classes = ["toxic", "severe_toxic", "obscene", "threat", "insult", "identity_hate"]
model.config.id2label = {i: toxicity_classes[i] for i in range(model.config.num_labels)}
def get_highest_toxicity_class(prediction):
max_index = prediction.argmax()
return model.config.id2label[max_index], prediction[max_index]
input = tokenizer(text, return_tensors="tf")
prediction = model(input)[0].numpy()[0]
if st.button("Submit", type="primary"):
label, probability = get_highest_toxicity_class(prediction)
tweet_portion = text[:50] + "..." if len(text) > 50 else text
if selected_model == "Fine-tuned Toxicity Model":
column_name = "Highest Toxicity Class"
else:
column_name = "Prediction"
if probability < 0.1:
st.write("This tweet is not toxic.")
df = pd.DataFrame(
{
"Tweet (portion)": [tweet_portion],
column_name: [label],
"Probability": [probability],
}
)
st.table(df)
|