Rob Caamano
commited on
App 2.6
Browse files
app.py
CHANGED
@@ -11,7 +11,6 @@ demo = """I'm so proud of myself for accomplishing my goals today. #motivation #
|
|
11 |
|
12 |
text = st.text_area("Input text", demo, height=250)
|
13 |
|
14 |
-
# Add a drop-down menu for model selection
|
15 |
model_options = {
|
16 |
"DistilBERT Base Uncased (SST-2)": "distilbert-base-uncased-finetuned-sst-2-english",
|
17 |
"Fine-tuned Toxicity Model": "RobCaamano/toxicity_distilbert",
|
@@ -23,7 +22,6 @@ mod_name = model_options[selected_model]
|
|
23 |
tokenizer = AutoTokenizer.from_pretrained(mod_name)
|
24 |
model = AutoModelForSequenceClassification.from_pretrained(mod_name)
|
25 |
|
26 |
-
# Update the id2label mapping for the fine-tuned model
|
27 |
if selected_model == "Fine-tuned Toxicity Model":
|
28 |
toxicity_classes = ["toxic", "severe_toxic", "obscene", "threat", "insult", "identity_hate"]
|
29 |
model.config.id2label = {i: toxicity_classes[i] for i in range(model.config.num_labels)}
|
@@ -40,17 +38,19 @@ if st.button("Submit", type="primary"):
|
|
40 |
|
41 |
tweet_portion = text[:50] + "..." if len(text) > 50 else text
|
42 |
|
43 |
-
# Create and display the table
|
44 |
if selected_model == "Fine-tuned Toxicity Model":
|
45 |
column_name = "Highest Toxicity Class"
|
46 |
else:
|
47 |
column_name = "Prediction"
|
48 |
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
|
|
|
|
|
|
|
11 |
|
12 |
text = st.text_area("Input text", demo, height=250)
|
13 |
|
|
|
14 |
model_options = {
|
15 |
"DistilBERT Base Uncased (SST-2)": "distilbert-base-uncased-finetuned-sst-2-english",
|
16 |
"Fine-tuned Toxicity Model": "RobCaamano/toxicity_distilbert",
|
|
|
22 |
tokenizer = AutoTokenizer.from_pretrained(mod_name)
|
23 |
model = AutoModelForSequenceClassification.from_pretrained(mod_name)
|
24 |
|
|
|
25 |
if selected_model == "Fine-tuned Toxicity Model":
|
26 |
toxicity_classes = ["toxic", "severe_toxic", "obscene", "threat", "insult", "identity_hate"]
|
27 |
model.config.id2label = {i: toxicity_classes[i] for i in range(model.config.num_labels)}
|
|
|
38 |
|
39 |
tweet_portion = text[:50] + "..." if len(text) > 50 else text
|
40 |
|
|
|
41 |
if selected_model == "Fine-tuned Toxicity Model":
|
42 |
column_name = "Highest Toxicity Class"
|
43 |
else:
|
44 |
column_name = "Prediction"
|
45 |
|
46 |
+
if probability < 0.1:
|
47 |
+
st.write("This tweet is not toxic.")
|
48 |
+
else:
|
49 |
+
df = pd.DataFrame(
|
50 |
+
{
|
51 |
+
"Tweet (portion)": [tweet_portion],
|
52 |
+
column_name: [label],
|
53 |
+
"Probability": [probability],
|
54 |
+
}
|
55 |
+
)
|
56 |
+
st.table(df)
|