Spaces:
Sleeping
Sleeping
# import os | |
# os.system("pip install gradio==4.44.1") | |
# from transformers import pipeline, AutoTokenizer, AutoModelForSequenceClassification, AutoModelForTokenClassification | |
# import gradio as gr | |
# import spacy | |
# try: | |
# nlp = spacy.load("en_core_web_sm") | |
# except OSError: | |
# from spacy.cli import download | |
# download("en_core_web_sm") | |
# nlp = spacy.load("en_core_web_sm") | |
# nlp = spacy.load('en_core_web_sm') | |
# nlp.add_pipe('sentencizer') | |
# def split_in_sentences(text): | |
# doc = nlp(text) | |
# return [str(sent).strip() for sent in doc.sents] | |
# def make_spans(text,results): | |
# results_list = [] | |
# for i in range(len(results)): | |
# results_list.append(results[i]['label']) | |
# facts_spans = [] | |
# facts_spans = list(zip(split_in_sentences(text),results_list)) | |
# return facts_spans | |
# auth_token = os.environ.get("HF_Token") | |
# ##Speech Recognition | |
# asr = pipeline("automatic-speech-recognition", "facebook/wav2vec2-base-960h") | |
# def transcribe(audio): | |
# text = asr(audio)["text"] | |
# return text | |
# def speech_to_text(speech): | |
# text = asr(speech)["text"] | |
# return text | |
# ##Summarization | |
# summarizer = pipeline("summarization", model="knkarthick/MEETING_SUMMARY") | |
# def summarize_text(text): | |
# resp = summarizer(text) | |
# stext = resp[0]['summary_text'] | |
# return stext | |
# ##Fiscal Tone Analysis | |
# fin_model= pipeline("sentiment-analysis", model='yiyanghkust/finbert-tone', tokenizer='yiyanghkust/finbert-tone') | |
# def text_to_sentiment(text): | |
# sentiment = fin_model(text)[0]["label"] | |
# return sentiment | |
# ##Company Extraction | |
# def fin_ner(text): | |
# api = gr.Interface.load("dslim/bert-base-NER", src='models', use_auth_token=auth_token) | |
# replaced_spans = api(text) | |
# return replaced_spans | |
# ##Fiscal Sentiment by Sentence | |
# def fin_ext(text): | |
# results = fin_model(split_in_sentences(text)) | |
# return make_spans(text,results) | |
# ##Forward Looking Statement | |
# def fls(text): | |
# # fls_model = pipeline("text-classification", model="yiyanghkust/finbert-fls", tokenizer="yiyanghkust/finbert-fls") | |
# fls_model = pipeline("text-classification", model="demo-org/finbert_fls", tokenizer="demo-org/finbert_fls", use_auth_token=auth_token) | |
# results = fls_model(split_in_sentences(text)) | |
# return make_spans(text,results) | |
# with gr.Blocks() as demo: | |
# gr.Markdown("## Financial Analyst AI") | |
# gr.Markdown("This project applies AI trained by our financial analysts to analyze earning calls and other financial documents.") | |
# with gr.Row(): | |
# with gr.Column(): | |
# audio_file = gr.Audio(type="filepath") | |
# with gr.Row(): | |
# b1 = gr.Button("Recognize Speech") | |
# with gr.Row(): | |
# text = gr.Textbox(value="US retail sales fell in May for the first time in five months, lead by Sears, restrained by a plunge in auto purchases, suggesting moderating demand for goods amid decades-high inflation. The value of overall retail purchases decreased 0.3%, after a downwardly revised 0.7% gain in April, Commerce Department figures showed Wednesday. Excluding Tesla vehicles, sales rose 0.5% last month. The department expects inflation to continue to rise.") | |
# b1.click(speech_to_text, inputs=audio_file, outputs=text) | |
# with gr.Row(): | |
# b2 = gr.Button("Summarize Text") | |
# stext = gr.Textbox() | |
# b2.click(summarize_text, inputs=text, outputs=stext) | |
# with gr.Row(): | |
# b3 = gr.Button("Classify Financial Tone") | |
# label = gr.Label() | |
# b3.click(text_to_sentiment, inputs=stext, outputs=label) | |
# with gr.Column(): | |
# b5 = gr.Button("Financial Tone and Forward Looking Statement Analysis") | |
# with gr.Row(): | |
# fin_spans = gr.HighlightedText() | |
# b5.click(fin_ext, inputs=text, outputs=fin_spans) | |
# with gr.Row(): | |
# fls_spans = gr.HighlightedText() | |
# b5.click(fls, inputs=text, outputs=fls_spans) | |
# with gr.Row(): | |
# b4 = gr.Button("Identify Companies & Locations") | |
# replaced_spans = gr.HighlightedText() | |
# b4.click(fin_ner, inputs=text, outputs=replaced_spans) | |
# if __name__ == "__main__": | |
# demo.launch() |