Spaces:
Sleeping
Sleeping
Update modules/financial_analyst.py
Browse files- modules/financial_analyst.py +91 -91
modules/financial_analyst.py
CHANGED
@@ -1,105 +1,105 @@
|
|
1 |
-
import os
|
2 |
-
os.system("pip install gradio==4.44.1")
|
3 |
-
from transformers import pipeline, AutoTokenizer, AutoModelForSequenceClassification, AutoModelForTokenClassification
|
4 |
-
import gradio as gr
|
5 |
-
import spacy
|
6 |
-
try:
|
7 |
-
|
8 |
-
except OSError:
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
nlp = spacy.load('en_core_web_sm')
|
13 |
-
nlp.add_pipe('sentencizer')
|
14 |
|
15 |
-
def split_in_sentences(text):
|
16 |
-
|
17 |
-
|
18 |
|
19 |
-
def make_spans(text,results):
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
|
27 |
-
auth_token = os.environ.get("HF_Token")
|
28 |
|
29 |
-
##Speech Recognition
|
30 |
-
asr = pipeline("automatic-speech-recognition", "facebook/wav2vec2-base-960h")
|
31 |
-
def transcribe(audio):
|
32 |
-
|
33 |
-
|
34 |
-
def speech_to_text(speech):
|
35 |
-
|
36 |
-
|
37 |
|
38 |
-
##Summarization
|
39 |
-
summarizer = pipeline("summarization", model="knkarthick/MEETING_SUMMARY")
|
40 |
-
def summarize_text(text):
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
|
45 |
-
##Fiscal Tone Analysis
|
46 |
-
fin_model= pipeline("sentiment-analysis", model='yiyanghkust/finbert-tone', tokenizer='yiyanghkust/finbert-tone')
|
47 |
-
def text_to_sentiment(text):
|
48 |
-
|
49 |
-
|
50 |
|
51 |
-
##Company Extraction
|
52 |
-
def fin_ner(text):
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
|
57 |
-
##Fiscal Sentiment by Sentence
|
58 |
-
def fin_ext(text):
|
59 |
-
|
60 |
-
|
61 |
|
62 |
-
##Forward Looking Statement
|
63 |
-
def fls(text):
|
64 |
-
# fls_model = pipeline("text-classification", model="yiyanghkust/finbert-fls", tokenizer="yiyanghkust/finbert-fls")
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
|
69 |
|
70 |
|
71 |
-
with gr.Blocks() as demo:
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
|
104 |
-
if __name__ == "__main__":
|
105 |
-
|
|
|
1 |
+
# import os
|
2 |
+
# os.system("pip install gradio==4.44.1")
|
3 |
+
# from transformers import pipeline, AutoTokenizer, AutoModelForSequenceClassification, AutoModelForTokenClassification
|
4 |
+
# import gradio as gr
|
5 |
+
# import spacy
|
6 |
+
# try:
|
7 |
+
# nlp = spacy.load("en_core_web_sm")
|
8 |
+
# except OSError:
|
9 |
+
# from spacy.cli import download
|
10 |
+
# download("en_core_web_sm")
|
11 |
+
# nlp = spacy.load("en_core_web_sm")
|
12 |
+
# nlp = spacy.load('en_core_web_sm')
|
13 |
+
# nlp.add_pipe('sentencizer')
|
14 |
|
15 |
+
# def split_in_sentences(text):
|
16 |
+
# doc = nlp(text)
|
17 |
+
# return [str(sent).strip() for sent in doc.sents]
|
18 |
|
19 |
+
# def make_spans(text,results):
|
20 |
+
# results_list = []
|
21 |
+
# for i in range(len(results)):
|
22 |
+
# results_list.append(results[i]['label'])
|
23 |
+
# facts_spans = []
|
24 |
+
# facts_spans = list(zip(split_in_sentences(text),results_list))
|
25 |
+
# return facts_spans
|
26 |
|
27 |
+
# auth_token = os.environ.get("HF_Token")
|
28 |
|
29 |
+
# ##Speech Recognition
|
30 |
+
# asr = pipeline("automatic-speech-recognition", "facebook/wav2vec2-base-960h")
|
31 |
+
# def transcribe(audio):
|
32 |
+
# text = asr(audio)["text"]
|
33 |
+
# return text
|
34 |
+
# def speech_to_text(speech):
|
35 |
+
# text = asr(speech)["text"]
|
36 |
+
# return text
|
37 |
|
38 |
+
# ##Summarization
|
39 |
+
# summarizer = pipeline("summarization", model="knkarthick/MEETING_SUMMARY")
|
40 |
+
# def summarize_text(text):
|
41 |
+
# resp = summarizer(text)
|
42 |
+
# stext = resp[0]['summary_text']
|
43 |
+
# return stext
|
44 |
|
45 |
+
# ##Fiscal Tone Analysis
|
46 |
+
# fin_model= pipeline("sentiment-analysis", model='yiyanghkust/finbert-tone', tokenizer='yiyanghkust/finbert-tone')
|
47 |
+
# def text_to_sentiment(text):
|
48 |
+
# sentiment = fin_model(text)[0]["label"]
|
49 |
+
# return sentiment
|
50 |
|
51 |
+
# ##Company Extraction
|
52 |
+
# def fin_ner(text):
|
53 |
+
# api = gr.Interface.load("dslim/bert-base-NER", src='models', use_auth_token=auth_token)
|
54 |
+
# replaced_spans = api(text)
|
55 |
+
# return replaced_spans
|
56 |
|
57 |
+
# ##Fiscal Sentiment by Sentence
|
58 |
+
# def fin_ext(text):
|
59 |
+
# results = fin_model(split_in_sentences(text))
|
60 |
+
# return make_spans(text,results)
|
61 |
|
62 |
+
# ##Forward Looking Statement
|
63 |
+
# def fls(text):
|
64 |
+
# # fls_model = pipeline("text-classification", model="yiyanghkust/finbert-fls", tokenizer="yiyanghkust/finbert-fls")
|
65 |
+
# fls_model = pipeline("text-classification", model="demo-org/finbert_fls", tokenizer="demo-org/finbert_fls", use_auth_token=auth_token)
|
66 |
+
# results = fls_model(split_in_sentences(text))
|
67 |
+
# return make_spans(text,results)
|
68 |
|
69 |
|
70 |
|
71 |
+
# with gr.Blocks() as demo:
|
72 |
+
# gr.Markdown("## Financial Analyst AI")
|
73 |
+
# gr.Markdown("This project applies AI trained by our financial analysts to analyze earning calls and other financial documents.")
|
74 |
+
# with gr.Row():
|
75 |
+
# with gr.Column():
|
76 |
+
# audio_file = gr.Audio(type="filepath")
|
77 |
|
78 |
+
# with gr.Row():
|
79 |
+
# b1 = gr.Button("Recognize Speech")
|
80 |
+
# with gr.Row():
|
81 |
+
# text = gr.Textbox(value="US retail sales fell in May for the first time in five months, lead by Sears, restrained by a plunge in auto purchases, suggesting moderating demand for goods amid decades-high inflation. The value of overall retail purchases decreased 0.3%, after a downwardly revised 0.7% gain in April, Commerce Department figures showed Wednesday. Excluding Tesla vehicles, sales rose 0.5% last month. The department expects inflation to continue to rise.")
|
82 |
+
# b1.click(speech_to_text, inputs=audio_file, outputs=text)
|
83 |
+
# with gr.Row():
|
84 |
+
# b2 = gr.Button("Summarize Text")
|
85 |
+
# stext = gr.Textbox()
|
86 |
+
# b2.click(summarize_text, inputs=text, outputs=stext)
|
87 |
+
# with gr.Row():
|
88 |
+
# b3 = gr.Button("Classify Financial Tone")
|
89 |
+
# label = gr.Label()
|
90 |
+
# b3.click(text_to_sentiment, inputs=stext, outputs=label)
|
91 |
+
# with gr.Column():
|
92 |
+
# b5 = gr.Button("Financial Tone and Forward Looking Statement Analysis")
|
93 |
+
# with gr.Row():
|
94 |
+
# fin_spans = gr.HighlightedText()
|
95 |
+
# b5.click(fin_ext, inputs=text, outputs=fin_spans)
|
96 |
+
# with gr.Row():
|
97 |
+
# fls_spans = gr.HighlightedText()
|
98 |
+
# b5.click(fls, inputs=text, outputs=fls_spans)
|
99 |
+
# with gr.Row():
|
100 |
+
# b4 = gr.Button("Identify Companies & Locations")
|
101 |
+
# replaced_spans = gr.HighlightedText()
|
102 |
+
# b4.click(fin_ner, inputs=text, outputs=replaced_spans)
|
103 |
|
104 |
+
# if __name__ == "__main__":
|
105 |
+
# demo.launch()
|