Lord-Raven
Playing with models.
9cd8fce
raw
history blame
2.2 kB
import gradio
import json
import torch
from transformers import AutoTokenizer
from transformers import pipeline
from optimum.onnxruntime import ORTModelForSequenceClassification
from fastapi import FastAPI
from fastapi.middleware.cors import CORSMiddleware
# CORS Config
app = FastAPI()
app.add_middleware(
CORSMiddleware,
allow_origins=["https://statosphere-3704059fdd7e.c5v4v4jx6pq5.win"],
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
)
# "xenova/mobilebert-uncased-mnli" "typeform/mobilebert-uncased-mnli" Fast but small--same as bundled in Statosphere
# "xenova/deberta-v3-base-tasksource-nli" Not impressed
# "Xenova/bart-large-mnli" A bit slow
# "Xenova/distilbert-base-uncased-mnli" "typeform/distilbert-base-uncased-mnli" Bad answers
# "Xenova/deBERTa-v3-base-mnli" "MoritzLaurer/DeBERTa-v3-base-mnli" Still a bit slow and not great answers
model_name = "xenova/nli-deberta-v3-small"
file_name = "onnx/model_quantized.onnx"
tokenizer_name = "cross-encoder/nli-deberta-v3-small"
model = ORTModelForSequenceClassification.from_pretrained(model_name, file_name=file_name)
tokenizer = AutoTokenizer.from_pretrained(tokenizer_name, model_max_length=512)
# file = cached_download("https://huggingface.co/" + model_name + "")
# sess = InferenceSession(file)
classifier = pipeline(task="zero-shot-classification", model=model, tokenizer=tokenizer)
def zero_shot_classification(data_string, request: gradio.Request):
if request:
print("Request headers dictionary:", request.headers)
if request.headers["origin"] not in ["https://statosphere-3704059fdd7e.c5v4v4jx6pq5.win", "https://jhuhman-statosphere-backend.hf.space"]:
return "{}"
print(data_string)
data = json.loads(data_string)
print(data)
results = classifier(data['sequence'], candidate_labels=data['candidate_labels'], hypothesis_template=data['hypothesis_template'], multi_label=data['multi_label'])
response_string = json.dumps(results)
return response_string
gradio_interface = gradio.Interface(
fn = zero_shot_classification,
inputs = gradio.Textbox(label="JSON Input"),
outputs = gradio.Textbox()
)
gradio_interface.launch()