import gradio import json import torch from transformers import AutoTokenizer from transformers import pipeline from optimum.onnxruntime import ORTModelForSequenceClassification from fastapi import FastAPI from fastapi.middleware.cors import CORSMiddleware # CORS Config app = FastAPI() app.add_middleware( CORSMiddleware, allow_origins=["https://statosphere-3704059fdd7e.c5v4v4jx6pq5.win"], allow_credentials=True, allow_methods=["*"], allow_headers=["*"], ) # "xenova/mobilebert-uncased-mnli" "typeform/mobilebert-uncased-mnli" Fast but small--same as bundled in Statosphere # "xenova/deberta-v3-base-tasksource-nli" Not impressed # "Xenova/bart-large-mnli" A bit slow # "Xenova/distilbert-base-uncased-mnli" "typeform/distilbert-base-uncased-mnli" Bad answers # "Xenova/deBERTa-v3-base-mnli" "MoritzLaurer/DeBERTa-v3-base-mnli" Still a bit slow and not great answers model_name = "xenova/nli-deberta-v3-small" file_name = "onnx/model_quantized.onnx" tokenizer_name = "cross-encoder/nli-deberta-v3-small" model = ORTModelForSequenceClassification.from_pretrained(model_name, file_name=file_name) tokenizer = AutoTokenizer.from_pretrained(tokenizer_name, model_max_length=512) # file = cached_download("https://huggingface.co/" + model_name + "") # sess = InferenceSession(file) classifier = pipeline(task="zero-shot-classification", model=model, tokenizer=tokenizer) def zero_shot_classification(data_string, request: gradio.Request): if request: print("Request headers dictionary:", request.headers) if request.headers["origin"] not in ["https://statosphere-3704059fdd7e.c5v4v4jx6pq5.win", "https://jhuhman-statosphere-backend.hf.space"]: return "{}" print(data_string) data = json.loads(data_string) print(data) results = classifier(data['sequence'], candidate_labels=data['candidate_labels'], hypothesis_template=data['hypothesis_template'], multi_label=data['multi_label']) response_string = json.dumps(results) return response_string gradio_interface = gradio.Interface( fn = zero_shot_classification, inputs = gradio.Textbox(label="JSON Input"), outputs = gradio.Textbox() ) gradio_interface.launch()