Update knowledge_base.py
Browse files- knowledge_base.py +17 -32
knowledge_base.py
CHANGED
@@ -1,10 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
# Create FAISS index
|
2 |
def create_faiss_index(texts):
|
3 |
"""
|
4 |
Create a FAISS index from the provided list of texts.
|
5 |
"""
|
6 |
-
|
7 |
-
|
8 |
|
9 |
# Load pre-trained SentenceTransformer model
|
10 |
model = SentenceTransformer("sentence-transformers/all-MiniLM-L6-v2")
|
@@ -17,14 +31,11 @@ def create_faiss_index(texts):
|
|
17 |
|
18 |
return index, texts
|
19 |
|
20 |
-
|
21 |
# Search the FAISS index
|
22 |
def search_faiss(faiss_index, stored_texts, query, top_k=3):
|
23 |
"""
|
24 |
Search the FAISS index for the most relevant texts based on the query.
|
25 |
"""
|
26 |
-
from sentence_transformers import SentenceTransformer
|
27 |
-
|
28 |
# Load the same model used for indexing
|
29 |
model = SentenceTransformer("sentence-transformers/all-MiniLM-L6-v2")
|
30 |
|
@@ -37,30 +48,4 @@ def search_faiss(faiss_index, stored_texts, query, top_k=3):
|
|
37 |
# Retrieve the corresponding texts
|
38 |
results = [stored_texts[i] for i in indices[0] if i < len(stored_texts)]
|
39 |
|
40 |
-
return results
|
41 |
-
|
42 |
-
import re
|
43 |
-
|
44 |
-
def clean_text(text):
|
45 |
-
"""
|
46 |
-
Cleans text by removing unnecessary symbols and whitespace.
|
47 |
-
"""
|
48 |
-
text = re.sub(r"\s+", " ", text) # Replace multiple spaces with one
|
49 |
-
text = re.sub(r"[^ء-يa-zA-Z0-9.,!?؛:\-\(\)\n ]+", "", text) # Keep Arabic, English, and punctuation
|
50 |
-
return text.strip()
|
51 |
-
|
52 |
-
def create_faiss_index(texts):
|
53 |
-
from sentence_transformers import SentenceTransformer
|
54 |
-
import faiss
|
55 |
-
|
56 |
-
# Clean the text before indexing
|
57 |
-
texts = [clean_text(t) for t in texts]
|
58 |
-
|
59 |
-
model = SentenceTransformer("sentence-transformers/all-MiniLM-L6-v2")
|
60 |
-
embeddings = model.encode(texts)
|
61 |
-
|
62 |
-
dimension = embeddings.shape[1]
|
63 |
-
index = faiss.IndexFlatL2(dimension)
|
64 |
-
index.add(embeddings)
|
65 |
-
|
66 |
-
return index, texts
|
|
|
1 |
+
# Import necessary modules
|
2 |
+
import re
|
3 |
+
import faiss
|
4 |
+
from sentence_transformers import SentenceTransformer
|
5 |
+
|
6 |
+
# Clean text function
|
7 |
+
def clean_text(text):
|
8 |
+
"""
|
9 |
+
Cleans text by removing unnecessary symbols and whitespace.
|
10 |
+
"""
|
11 |
+
text = re.sub(r"\s+", " ", text) # Replace multiple spaces with one
|
12 |
+
text = re.sub(r"[^ء-يa-zA-Z0-9.,!?؛:\-\(\)\n ]+", "", text) # Keep Arabic, English, and punctuation
|
13 |
+
return text.strip()
|
14 |
+
|
15 |
# Create FAISS index
|
16 |
def create_faiss_index(texts):
|
17 |
"""
|
18 |
Create a FAISS index from the provided list of texts.
|
19 |
"""
|
20 |
+
# Clean the text before indexing
|
21 |
+
texts = [clean_text(t) for t in texts]
|
22 |
|
23 |
# Load pre-trained SentenceTransformer model
|
24 |
model = SentenceTransformer("sentence-transformers/all-MiniLM-L6-v2")
|
|
|
31 |
|
32 |
return index, texts
|
33 |
|
|
|
34 |
# Search the FAISS index
|
35 |
def search_faiss(faiss_index, stored_texts, query, top_k=3):
|
36 |
"""
|
37 |
Search the FAISS index for the most relevant texts based on the query.
|
38 |
"""
|
|
|
|
|
39 |
# Load the same model used for indexing
|
40 |
model = SentenceTransformer("sentence-transformers/all-MiniLM-L6-v2")
|
41 |
|
|
|
48 |
# Retrieve the corresponding texts
|
49 |
results = [stored_texts[i] for i in indices[0] if i < len(stored_texts)]
|
50 |
|
51 |
+
return results
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|