Update knowledge_base.py
Browse files- knowledge_base.py +27 -1
knowledge_base.py
CHANGED
@@ -37,4 +37,30 @@ def search_faiss(faiss_index, stored_texts, query, top_k=3):
|
|
37 |
# Retrieve the corresponding texts
|
38 |
results = [stored_texts[i] for i in indices[0] if i < len(stored_texts)]
|
39 |
|
40 |
-
return results
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
37 |
# Retrieve the corresponding texts
|
38 |
results = [stored_texts[i] for i in indices[0] if i < len(stored_texts)]
|
39 |
|
40 |
+
return results
|
41 |
+
|
42 |
+
import re
|
43 |
+
|
44 |
+
def clean_text(text):
|
45 |
+
"""
|
46 |
+
Cleans text by removing unnecessary symbols and whitespace.
|
47 |
+
"""
|
48 |
+
text = re.sub(r"\s+", " ", text) # Replace multiple spaces with one
|
49 |
+
text = re.sub(r"[^ء-يa-zA-Z0-9.,!?؛:\-\(\)\n ]+", "", text) # Keep Arabic, English, and punctuation
|
50 |
+
return text.strip()
|
51 |
+
|
52 |
+
def create_faiss_index(texts):
|
53 |
+
from sentence_transformers import SentenceTransformer
|
54 |
+
import faiss
|
55 |
+
|
56 |
+
# Clean the text before indexing
|
57 |
+
texts = [clean_text(t) for t in texts]
|
58 |
+
|
59 |
+
model = SentenceTransformer("sentence-transformers/all-MiniLM-L6-v2")
|
60 |
+
embeddings = model.encode(texts)
|
61 |
+
|
62 |
+
dimension = embeddings.shape[1]
|
63 |
+
index = faiss.IndexFlatL2(dimension)
|
64 |
+
index.add(embeddings)
|
65 |
+
|
66 |
+
return index, texts
|