File size: 6,195 Bytes
cc47095
 
 
 
 
 
 
 
 
 
 
03d9668
cc47095
 
4131afb
cc47095
 
 
 
 
 
 
416743d
4131afb
cc47095
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4131afb
 
 
 
416743d
4131afb
cc47095
4131afb
cc47095
 
 
 
 
 
 
 
 
 
4131afb
 
 
 
 
 
 
 
 
 
 
 
416743d
cc47095
416743d
cc47095
4131afb
416743d
 
4131afb
cc47095
 
 
 
 
 
 
 
afe86c6
cc47095
 
 
 
 
 
 
 
 
 
 
 
 
4131afb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cc47095
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4131afb
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
import aiohttp
import json
import logging
import torch
import faiss
import numpy as np
from transformers import AutoModelForCausalLM, AutoTokenizer
from typing import List, Dict, Any
from cryptography.fernet import Fernet
from jwt import encode, decode, ExpiredSignatureError
from datetime import datetime, timedelta
#blockchain_module
import speech_recognition as sr
import pyttsx3
import os

from components.multi_agent import MultiAgentSystem
from components.ar_integration import ARDataOverlay
from components.neural_symbolic import NeuralSymbolicProcessor
from components.federated_learning import FederatedAI
from utils.database import Database
from utils.logger import logger
from secure_memory import SecureMemorySession
from codriao_tb_module import CodriaoHealthModule

class AICoreAGIX:
    def __init__(self, config_path: str = "config.json"):
        self.ethical_filter = EthicalFilter()
        self.config = self._load_config(config_path)
        self.models = self._initialize_models()
        self.context_memory = self._initialize_vector_memory()
        self.tokenizer = AutoTokenizer.from_pretrained(self.config["model_name"])
        self.model = AutoModelForCausalLM.from_pretrained(self.config["model_name"])
        self.http_session = aiohttp.ClientSession()
        self.database = Database()
        self.multi_agent_system = MultiAgentSystem()
        self.self_reflective_ai = SelfReflectiveAI()
        self.ar_overlay = ARDataOverlay()
        self.neural_symbolic_processor = NeuralSymbolicProcessor()
        self.federated_ai = FederatedAI()

        # Security + Memory
        key = os.environ.get("CODRIAO_SECRET_KEY").encode()
        self._encryption_key = key
        self.secure_memory = SecureMemorySession(self._encryption_key)

        self.speech_engine = pyttsx3.init()
        self.health_module = CodriaoHealthModule(ai_core=self)

    async def generate_response(self, query: str, user_id: int) -> Dict[str, Any]:
        try:
            # Ethical Safety Check
            result = self.ethical_filter.analyze_query(query)
            if result["status"] == "blocked":
                return {"error": result["reason"]}
            if result["status"] == "flagged":
                logger.warning(result["warning"])

            # Check if user explicitly requests TB analysis
            if any(phrase in query.lower() for phrase in ["tb check", "analyze my tb", "run tb diagnostics", "tb test"]):
                result = await self.run_tb_diagnostics("tb_image.jpg", "tb_cough.wav", user_id)
                return {
                    "response": result["ethical_analysis"],
                    "explanation": result["explanation"],
                    "tb_risk": result["tb_risk"],
                    "image_analysis": result["image_analysis"],
                    "audio_analysis": result["audio_analysis"],
                    "system_health": result["system_health"]
                }

            # Vectorize and encrypt
            vectorized_query = self._vectorize_query(query)
            self.secure_memory.encrypt_vector(user_id, vectorized_query)

            # (Optional) retrieve memory
            user_vectors = self.secure_memory.decrypt_vectors(user_id)

            # Main AI processing
            model_response = await self._generate_local_model_response(query)
            agent_response = self.multi_agent_system.delegate_task(query)
            self_reflection = self.self_reflective_ai.evaluate_response(query, model_response)
            ar_data = self.ar_overlay.fetch_augmented_data(query)
            neural_reasoning = self.neural_symbolic_processor.process_query(query)

            final_response = f"{model_response}\n\n{agent_response}\n\n{self_reflection}\n\nAR Insights: {ar_data}\n\nLogic: {neural_reasoning}"
            self.database.log_interaction(user_id, query, final_response)
            #blockchain_module.store_interaction(user_id, query, final_response)
            self._speak_response(final_response)

            return {
                "response": final_response,
                "real_time_data": self.federated_ai.get_latest_data(),
                "context_enhanced": True,
                "security_status": "Fully Secure"
            }

        except Exception as e:
            logger.error(f"Response generation failed: {e}")
            return {"error": "Processing failed - safety protocols engaged"}

    async def run_tb_diagnostics(self, image_path: str, audio_path: str, user_id: int) -> Dict[str, Any]:
        """Only runs TB analysis if explicitly requested."""
        try:
            result = await self.health_module.evaluate_tb_risk(image_path, audio_path, user_id)
            logger.info(f"TB Diagnostic Result: {result}")
            return result
        except Exception as e:
            logger.error(f"TB diagnostics failed: {e}")
            return {
                "tb_risk": "ERROR",
                "error": str(e),
                "image_analysis": {},
                "audio_analysis": {},
                "ethical_analysis": "Unable to complete TB diagnostic.",
                "explanation": None,
                "system_health": None
            }

    def _load_config(self, config_path: str) -> dict:
        with open(config_path, 'r') as file:
            return json.load(file)

    def _initialize_models(self):
        return {
            "agix_model": AutoModelForCausalLM.from_pretrained(self.config["model_name"]),
            "tokenizer": AutoTokenizer.from_pretrained(self.config["model_name"])
        }

    def _initialize_vector_memory(self):
        return faiss.IndexFlatL2(768)

    def _vectorize_query(self, query: str):
        tokenized = self.tokenizer(query, return_tensors="pt")
        return tokenized["input_ids"].detach().numpy()

    async def _generate_local_model_response(self, query: str) -> str:
        inputs = self.tokenizer(query, return_tensors="pt")
        outputs = self.model.generate(**inputs)
        return self.tokenizer.decode(outputs[0], skip_special_tokens=True)

    def _speak_response(self, response: str):
        self.speech_engine.say(response)
        self.speech_engine.runAndWait()