Spaces:
Runtime error
Runtime error
File size: 4,895 Bytes
cc47095 416743d bbaeb05 cc47095 bbaeb05 cc47095 416743d cc47095 416743d cc47095 416743d cc47095 416743d cc47095 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 |
import aiohttp
import json
import logging
import torch
import faiss
import numpy as np
from transformers import AutoModelForCausalLM, AutoTokenizer
from typing import List, Dict, Any
from cryptography.fernet import Fernet
from jwt import encode, decode, ExpiredSignatureError
from datetime import datetime, timedelta
import blockchain_module
import speech_recognition as sr
import pyttsx3
from ethical_filter import EthicalFilter
from components.agix_reflection import SelfReflectiveAI
from components.multi_agent import MultiAgentSystem
from components.ar_integration import ARDataOverlay
from components.neural_symbolic import NeuralSymbolicProcessor
from components.federated_learning import FederatedAI
from utils.database import Database
from utils.logger import logger
from secure_memory import SecureMemorySession
import os
from cryptography.fernet import Fernet
key = os.environ.get("CODRIAO_SECRET_KEY").encode()
self._encryption_key = key
self.secure_memory = SecureMemorySession(self._encryption_key)
class AICoreAGIX:
def __init__(self, config_path: str = "config.json"):
self.ethical_filter = EthicalFilter()
self.config = self._load_config(config_path)
self.models = self._initialize_models()
self.context_memory = self._initialize_vector_memory()
self.tokenizer = AutoTokenizer.from_pretrained(self.config["model_name"])
self.model = AutoModelForCausalLM.from_pretrained(self.config["model_name"])
self.http_session = aiohttp.ClientSession()
self.database = Database()
self.multi_agent_system = MultiAgentSystem()
self.self_reflective_ai = SelfReflectiveAI()
self.ar_overlay = ARDataOverlay()
self.neural_symbolic_processor = NeuralSymbolicProcessor()
self.federated_ai = FederatedAI()
self._encryption_key = Fernet.generate_key()
self.jwt_secret = "your_jwt_secret_key"
self.secure_memory = SecureMemorySession(self._encryption_key)
self.speech_engine = pyttsx3.init()
async def generate_response(self, query: str, user_id: int) -> Dict[str, Any]:
try:
# Ethical Safety Check
result = self.ethical_filter.analyze_query(query)
if result["status"] == "blocked":
return {"error": result["reason"]}
if result["status"] == "flagged":
logger.warning(result["warning"])
# Vectorize and encrypt
vectorized_query = self._vectorize_query(query)
self.secure_memory.encrypt_vector(user_id, vectorized_query)
# (Optional) retrieve memory for continuity
user_vectors = self.secure_memory.decrypt_vectors(user_id)
# Main pipeline
model_response = await self._generate_local_model_response(query)
agent_response = self.multi_agent_system.delegate_task(query)
self_reflection = self.self_reflective_ai.evaluate_response(query, model_response)
ar_data = self.ar_overlay.fetch_augmented_data(query)
neural_reasoning = self.neural_symbolic_processor.process_query(query)
final_response = f"{model_response}\n\n{agent_response}\n\n{self_reflection}\n\nAR Insights: {ar_data}\n\nLogic: {neural_reasoning}"
self.database.log_interaction(user_id, query, final_response)
blockchain_module.store_interaction(user_id, query, final_response)
self._speak_response(final_response)
return {
"response": final_response,
"real_time_data": self.federated_ai.get_latest_data(),
"context_enhanced": True,
"security_status": "Fully Secure"
}
except Exception as e:
logger.error(f"Response generation failed: {e}")
return {"error": "Processing failed - safety protocols engaged"}
def _load_config(self, config_path: str) -> dict:
with open(config_path, 'r') as file:
return json.load(file)
def _initialize_models(self):
return {
"agix_model": AutoModelForCausalLM.from_pretrained(self.config["model_name"]),
"tokenizer": AutoTokenizer.from_pretrained(self.config["model_name"])
}
def _initialize_vector_memory(self):
return faiss.IndexFlatL2(768)
def _vectorize_query(self, query: str):
tokenized = self.tokenizer(query, return_tensors="pt")
return tokenized["input_ids"].detach().numpy()
async def _generate_local_model_response(self, query: str) -> str:
inputs = self.tokenizer(query, return_tensors="pt")
outputs = self.model.generate(**inputs)
return self.tokenizer.decode(outputs[0], skip_special_tokens=True)
def _speak_response(self, response: str):
self.speech_engine.say(response)
self.speech_engine.runAndWait() |