File size: 4,895 Bytes
cc47095
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
416743d
bbaeb05
 
cc47095
bbaeb05
 
 
cc47095
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
416743d
cc47095
 
 
 
 
 
 
 
 
 
 
416743d
cc47095
416743d
cc47095
416743d
 
 
 
cc47095
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
import aiohttp
import json
import logging
import torch
import faiss
import numpy as np
from transformers import AutoModelForCausalLM, AutoTokenizer
from typing import List, Dict, Any
from cryptography.fernet import Fernet
from jwt import encode, decode, ExpiredSignatureError
from datetime import datetime, timedelta
import blockchain_module
import speech_recognition as sr
import pyttsx3
from ethical_filter import EthicalFilter

from components.agix_reflection import SelfReflectiveAI
from components.multi_agent import MultiAgentSystem
from components.ar_integration import ARDataOverlay
from components.neural_symbolic import NeuralSymbolicProcessor
from components.federated_learning import FederatedAI
from utils.database import Database
from utils.logger import logger
from secure_memory import SecureMemorySession
import os
from cryptography.fernet import Fernet

key = os.environ.get("CODRIAO_SECRET_KEY").encode()
self._encryption_key = key
self.secure_memory = SecureMemorySession(self._encryption_key)

class AICoreAGIX:
    def __init__(self, config_path: str = "config.json"):
        self.ethical_filter = EthicalFilter()
        self.config = self._load_config(config_path)
        self.models = self._initialize_models()
        self.context_memory = self._initialize_vector_memory()
        self.tokenizer = AutoTokenizer.from_pretrained(self.config["model_name"])
        self.model = AutoModelForCausalLM.from_pretrained(self.config["model_name"])
        self.http_session = aiohttp.ClientSession()
        self.database = Database()
        self.multi_agent_system = MultiAgentSystem()
        self.self_reflective_ai = SelfReflectiveAI()
        self.ar_overlay = ARDataOverlay()
        self.neural_symbolic_processor = NeuralSymbolicProcessor()
        self.federated_ai = FederatedAI()
        self._encryption_key = Fernet.generate_key()
        self.jwt_secret = "your_jwt_secret_key"
        self.secure_memory = SecureMemorySession(self._encryption_key)
        self.speech_engine = pyttsx3.init()

    async def generate_response(self, query: str, user_id: int) -> Dict[str, Any]:
        try:
            # Ethical Safety Check
            result = self.ethical_filter.analyze_query(query)
            if result["status"] == "blocked":
                return {"error": result["reason"]}
            if result["status"] == "flagged":
                logger.warning(result["warning"])

            # Vectorize and encrypt
            vectorized_query = self._vectorize_query(query)
            self.secure_memory.encrypt_vector(user_id, vectorized_query)

            # (Optional) retrieve memory for continuity
            user_vectors = self.secure_memory.decrypt_vectors(user_id)

            # Main pipeline
            model_response = await self._generate_local_model_response(query)
            agent_response = self.multi_agent_system.delegate_task(query)
            self_reflection = self.self_reflective_ai.evaluate_response(query, model_response)
            ar_data = self.ar_overlay.fetch_augmented_data(query)
            neural_reasoning = self.neural_symbolic_processor.process_query(query)

            final_response = f"{model_response}\n\n{agent_response}\n\n{self_reflection}\n\nAR Insights: {ar_data}\n\nLogic: {neural_reasoning}"
            self.database.log_interaction(user_id, query, final_response)
            blockchain_module.store_interaction(user_id, query, final_response)
            self._speak_response(final_response)

            return {
                "response": final_response,
                "real_time_data": self.federated_ai.get_latest_data(),
                "context_enhanced": True,
                "security_status": "Fully Secure"
            }

        except Exception as e:
            logger.error(f"Response generation failed: {e}")
            return {"error": "Processing failed - safety protocols engaged"}

    def _load_config(self, config_path: str) -> dict:
        with open(config_path, 'r') as file:
            return json.load(file)

    def _initialize_models(self):
        return {
            "agix_model": AutoModelForCausalLM.from_pretrained(self.config["model_name"]),
            "tokenizer": AutoTokenizer.from_pretrained(self.config["model_name"])
        }

    def _initialize_vector_memory(self):
        return faiss.IndexFlatL2(768)

    def _vectorize_query(self, query: str):
        tokenized = self.tokenizer(query, return_tensors="pt")
        return tokenized["input_ids"].detach().numpy()

    async def _generate_local_model_response(self, query: str) -> str:
        inputs = self.tokenizer(query, return_tensors="pt")
        outputs = self.model.generate(**inputs)
        return self.tokenizer.decode(outputs[0], skip_special_tokens=True)

    def _speak_response(self, response: str):
        self.speech_engine.say(response)
        self.speech_engine.runAndWait()