File size: 6,380 Bytes
7a01de3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f7e23b0
 
bf33043
7a01de3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bf33043
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
import os
import asyncio
import copy
import inspect
import warnings
import json
import logging
from pathlib import Path
from typing import Any, Literal, Optional, Union, List
from cryptography.fernet import Fernet
from pydantic import BaseModel, Field
from gradio import Interface, Blocks
from gradio.components import Component
from gradio.data_classes import FileData, GradioModel, GradioRootModel
from gradio.events import Events
from gradio.exceptions import Error
from gradio_client import utils as client_utils
from transformers import pipeline
from diffusers import DiffusionPipeline, FluxPipeline
import torch
import gradio as gr

# Corrected code with closed parenthesis and explicit token handling
image_model = FluxPipeline.from_pretrained(
    "black-forest-labs/FLUX.1-dev", 
    torch_dtype=torch.bfloat16, 
    use_auth_token=os.getenv("HUGGINGFACE_TOKEN")
)
image_model.enable_model_cpu_offload()

# Define data models for Hugging Face
class FileDataDict(BaseModel):
    path: str
    url: Optional[str] = None
    size: Optional[int] = None
    orig_name: Optional[str] = None
    mime_type: Optional[str] = None
    is_stream: Optional[bool] = False

    class Config:
        arbitrary_types_allowed = True

class MessageDict(BaseModel):
    content: Union[str, FileDataDict, tuple, Component]
    role: Literal["user", "assistant", "system"]
    metadata: Optional[dict] = None
    options: Optional[List[dict]] = None

    class Config:
        arbitrary_types_allowed = True

class ChatMessage(GradioModel):
    role: Literal["user", "assistant", "system"]
    content: Union[str, FileData, Component]
    metadata: dict = Field(default_factory=dict)
    options: Optional[List[dict]] = None

    class Config:
        arbitrary_types_allowed = True

class ChatbotDataMessages(GradioRootModel):
    root: List[ChatMessage]

# Universal Reasoning Aggregator
class UniversalReasoning:
    def __init__(self, config):
        self.config = config
        self.sentiment_analyzer = pipeline("sentiment-analysis")  # Hugging Face sentiment analysis
        self.context_history = []  # Maintain context history

        # Load models with explicit truncation
        self.deepseek_model = pipeline(
            "text-classification", 
            model="distilbert-base-uncased-finetuned-sst-2-english",
            truncation=True
        )  # Updated model

        self.davinci_model = pipeline(
            "text2text-generation", 
            model="t5-small",
            truncation=True
        )  # Replacing text-davinci with T5

        self.additional_model = pipeline(
            "text-generation", 
            model="EleutherAI/gpt-neo-125M",
            truncation=True
        )  # Example GPT-Neo model

        # Use earlier-defined image model
        self.image_model = image_model

    async def generate_response(self, question: str) -> str:
        self.context_history.append(question)  # Add question to context history
        sentiment_score = self.analyze_sentiment(question)

        deepseek_response = self.deepseek_model(question)
        davinci_response = self.davinci_model(question, max_length=50, truncation=True)
        additional_response = self.additional_model(question, max_length=100, truncation=True)

        responses = [
            f"Sentiment score: {sentiment_score}",
            f"DeepSeek Response: {deepseek_response}",
            f"T5 Response: {davinci_response}",
            f"Additional Model Response: {additional_response}"
        ]

        return "\n\n".join(responses)

    def generate_image(self, prompt: str):
        image = self.image_model(
            prompt,
            height=1024,
            width=1024,
            guidance_scale=3.5,
            num_inference_steps=50,
            max_sequence_length=512,
            generator=torch.Generator("cpu").manual_seed(0)
        ).images[0]
        image.save("flux-dev.png")
        return image

    def analyze_sentiment(self, text: str) -> list:
        sentiment_score = self.sentiment_analyzer(text)  # Returns a list of dictionaries
        logging.info(f"Sentiment analysis result: {sentiment_score}")
        return sentiment_score

# Main Multimodal Chatbot Component
class MultimodalChatbot(Component):
    def __init__(
        self,
        value: Optional[List[MessageDict]] = None,
        label: Optional[str] = None,
        render: bool = True,
        log_file: Optional[Path] = None,
    ):
        # Ensure value is initialized as an empty list if None
        value = value or []
        super().__init__(label=label, value=value)
        self.log_file = log_file
        self.render = render
        self.data_model = ChatbotDataMessages
        self.universal_reasoning = UniversalReasoning({})

    def preprocess(self, payload: Optional[ChatbotDataMessages]) -> List[MessageDict]:
        # Handle None payload gracefully
        if payload is None:
            return []
        return payload.root

    def postprocess(self, messages: Optional[List[MessageDict]]) -> ChatbotDataMessages:
        # Ensure messages is a valid list
        messages = messages or []
        return ChatbotDataMessages(root=messages)

# Hugging Face Integration Class
class HuggingFaceChatbot:
    def __init__(self):
        # Initialize MultimodalChatbot with a default empty list
        self.chatbot = MultimodalChatbot(value=[])

    def setup_interface(self):
        async def chatbot_logic(input_text: str) -> str:
            return await self.chatbot.universal_reasoning.generate_response(input_text)

        def image_logic(prompt: str):
            return self.chatbot.universal_reasoning.generate_image(prompt)

        interface = Interface(
            fn=chatbot_logic,
            inputs="text",
            outputs="text",
            title="Hugging Face Multimodal Chatbot",
        )

        image_interface = Interface(
            fn=image_logic,
            inputs="text",
            outputs="image",
            title="Image Generator",
        )

        return Blocks([interface, image_interface])

    def launch(self):
        interface = self.setup_interface()
        interface.launch()

# If running as standalone
if __name__ == "__main__":
    logging.basicConfig(level=logging.DEBUG, format='%(asctime)s - %(levelname)s - %(message)s')
    chatbot = HuggingFaceChatbot()
    chatbot.launch()