Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,3 +1,193 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import asyncio
|
3 |
+
import copy
|
4 |
+
import inspect
|
5 |
+
import warnings
|
6 |
+
import json
|
7 |
+
import logging
|
8 |
+
from pathlib import Path
|
9 |
+
from typing import Any, Literal, Optional, Union, List
|
10 |
+
from cryptography.fernet import Fernet
|
11 |
+
from pydantic import BaseModel, Field
|
12 |
+
from gradio import Interface, Blocks
|
13 |
+
from gradio.components import Component
|
14 |
+
from gradio.data_classes import FileData, GradioModel, GradioRootModel
|
15 |
+
from gradio.events import Events
|
16 |
+
from gradio.exceptions import Error
|
17 |
+
from gradio_client import utils as client_utils
|
18 |
+
from transformers import pipeline
|
19 |
+
from diffusers import DiffusionPipeline, FluxPipeline
|
20 |
+
import torch
|
21 |
import gradio as gr
|
22 |
|
23 |
+
# Corrected code with closed parenthesis
|
24 |
+
image_model = FluxPipeline.from_pretrained(
|
25 |
+
"black-forest-labs/FLUX.1-dev",
|
26 |
+
torch_dtype=torch.bfloat16,
|
27 |
+
use_auth_token=os.getenv("HUGGINGFACE_TOKEN")
|
28 |
+
)
|
29 |
+
image_model.enable_model_cpu_offload()
|
30 |
+
|
31 |
+
# Define data models for Hugging Face
|
32 |
+
class FileDataDict(BaseModel):
|
33 |
+
path: str
|
34 |
+
url: Optional[str] = None
|
35 |
+
size: Optional[int] = None
|
36 |
+
orig_name: Optional[str] = None
|
37 |
+
mime_type: Optional[str] = None
|
38 |
+
is_stream: Optional[bool] = False
|
39 |
+
|
40 |
+
class Config:
|
41 |
+
arbitrary_types_allowed = True
|
42 |
+
|
43 |
+
class MessageDict(BaseModel):
|
44 |
+
content: Union[str, FileDataDict, tuple, Component]
|
45 |
+
role: Literal["user", "assistant", "system"]
|
46 |
+
metadata: Optional[dict] = None
|
47 |
+
options: Optional[List[dict]] = None
|
48 |
+
|
49 |
+
class Config:
|
50 |
+
arbitrary_types_allowed = True
|
51 |
+
|
52 |
+
class ChatMessage(GradioModel):
|
53 |
+
role: Literal["user", "assistant", "system"]
|
54 |
+
content: Union[str, FileData, Component]
|
55 |
+
metadata: dict = Field(default_factory=dict)
|
56 |
+
options: Optional[List[dict]] = None
|
57 |
+
|
58 |
+
class Config:
|
59 |
+
arbitrary_types_allowed = True
|
60 |
+
|
61 |
+
class ChatbotDataMessages(GradioRootModel):
|
62 |
+
root: List[ChatMessage]
|
63 |
+
|
64 |
+
# Universal Reasoning Aggregator
|
65 |
+
class UniversalReasoning:
|
66 |
+
def __init__(self, config):
|
67 |
+
self.config = config
|
68 |
+
self.sentiment_analyzer = pipeline("sentiment-analysis") # Hugging Face sentiment analysis
|
69 |
+
self.context_history = [] # Maintain context history
|
70 |
+
|
71 |
+
# Load models with explicit truncation
|
72 |
+
self.deepseek_model = pipeline(
|
73 |
+
"text-classification",
|
74 |
+
model="distilbert-base-uncased-finetuned-sst-2-english",
|
75 |
+
truncation=True
|
76 |
+
) # Updated model
|
77 |
+
|
78 |
+
self.davinci_model = pipeline(
|
79 |
+
"text2text-generation",
|
80 |
+
model="t5-small",
|
81 |
+
truncation=True
|
82 |
+
) # Replacing text-davinci with T5
|
83 |
+
|
84 |
+
self.additional_model = pipeline(
|
85 |
+
"text-generation",
|
86 |
+
model="EleutherAI/gpt-neo-125M",
|
87 |
+
truncation=True
|
88 |
+
) # Example GPT-Neo model
|
89 |
+
|
90 |
+
# Use earlier-defined image model
|
91 |
+
self.image_model = image_model
|
92 |
+
|
93 |
+
async def generate_response(self, question: str) -> str:
|
94 |
+
self.context_history.append(question) # Add question to context history
|
95 |
+
sentiment_score = self.analyze_sentiment(question)
|
96 |
+
|
97 |
+
deepseek_response = self.deepseek_model(question)
|
98 |
+
davinci_response = self.davinci_model(question, max_length=50, truncation=True)
|
99 |
+
additional_response = self.additional_model(question, max_length=100, truncation=True)
|
100 |
+
|
101 |
+
responses = [
|
102 |
+
f"Sentiment score: {sentiment_score}",
|
103 |
+
f"DeepSeek Response: {deepseek_response}",
|
104 |
+
f"T5 Response: {davinci_response}",
|
105 |
+
f"Additional Model Response: {additional_response}"
|
106 |
+
]
|
107 |
+
|
108 |
+
return "\n\n".join(responses)
|
109 |
+
|
110 |
+
def generate_image(self, prompt: str):
|
111 |
+
image = self.image_model(
|
112 |
+
prompt,
|
113 |
+
height=1024,
|
114 |
+
width=1024,
|
115 |
+
guidance_scale=3.5,
|
116 |
+
num_inference_steps=50,
|
117 |
+
max_sequence_length=512,
|
118 |
+
generator=torch.Generator("cpu").manual_seed(0)
|
119 |
+
).images[0]
|
120 |
+
image.save("flux-dev.png")
|
121 |
+
return image
|
122 |
+
|
123 |
+
def analyze_sentiment(self, text: str) -> list:
|
124 |
+
sentiment_score = self.sentiment_analyzer(text) # Returns a list of dictionaries
|
125 |
+
logging.info(f"Sentiment analysis result: {sentiment_score}")
|
126 |
+
return sentiment_score
|
127 |
+
|
128 |
+
# Main Multimodal Chatbot Component
|
129 |
+
class MultimodalChatbot(Component):
|
130 |
+
def __init__(
|
131 |
+
self,
|
132 |
+
value: Optional[List[MessageDict]] = None,
|
133 |
+
label: Optional[str] = None,
|
134 |
+
render: bool = True,
|
135 |
+
log_file: Optional[Path] = None,
|
136 |
+
):
|
137 |
+
# Ensure value is initialized as an empty list if None
|
138 |
+
value = value or []
|
139 |
+
super().__init__(label=label, value=value)
|
140 |
+
self.log_file = log_file
|
141 |
+
self.render = render
|
142 |
+
self.data_model = ChatbotDataMessages
|
143 |
+
self.universal_reasoning = UniversalReasoning({})
|
144 |
+
|
145 |
+
def preprocess(self, payload: Optional[ChatbotDataMessages]) -> List[MessageDict]:
|
146 |
+
# Handle None payload gracefully
|
147 |
+
if payload is None:
|
148 |
+
return []
|
149 |
+
return payload.root
|
150 |
+
|
151 |
+
def postprocess(self, messages: Optional[List[MessageDict]]) -> ChatbotDataMessages:
|
152 |
+
# Ensure messages is a valid list
|
153 |
+
messages = messages or []
|
154 |
+
return ChatbotDataMessages(root=messages)
|
155 |
+
|
156 |
+
# Hugging Face Integration Class
|
157 |
+
class HuggingFaceChatbot:
|
158 |
+
def __init__(self):
|
159 |
+
# Initialize MultimodalChatbot with a default empty list
|
160 |
+
self.chatbot = MultimodalChatbot(value=[])
|
161 |
+
|
162 |
+
def setup_interface(self):
|
163 |
+
async def chatbot_logic(input_text: str) -> str:
|
164 |
+
return await self.chatbot.universal_reasoning.generate_response(input_text)
|
165 |
+
|
166 |
+
def image_logic(prompt: str):
|
167 |
+
return self.chatbot.universal_reasoning.generate_image(prompt)
|
168 |
+
|
169 |
+
interface = Interface(
|
170 |
+
fn=chatbot_logic,
|
171 |
+
inputs="text",
|
172 |
+
outputs="text",
|
173 |
+
title="Hugging Face Multimodal Chatbot",
|
174 |
+
)
|
175 |
+
|
176 |
+
image_interface = Interface(
|
177 |
+
fn=image_logic,
|
178 |
+
inputs="text",
|
179 |
+
outputs="image",
|
180 |
+
title="Image Generator",
|
181 |
+
)
|
182 |
+
|
183 |
+
return Blocks([interface, image_interface])
|
184 |
+
|
185 |
+
def launch(self):
|
186 |
+
interface = self.setup_interface()
|
187 |
+
interface.launch()
|
188 |
+
|
189 |
+
# If running as standalone
|
190 |
+
if __name__ == "__main__":
|
191 |
+
logging.basicConfig(level=logging.DEBUG, format='%(asctime)s - %(levelname)s - %(message)s')
|
192 |
+
chatbot = HuggingFaceChatbot()
|
193 |
+
chatbot.launch()
|