|
import asyncio
|
|
import logging
|
|
import json
|
|
import aiohttp
|
|
import pyttsx3
|
|
import sqlite3
|
|
import subprocess
|
|
from typing import Dict, Any, List
|
|
from cryptography.fernet import Fernet
|
|
from web3 import Web3
|
|
|
|
|
|
|
|
|
|
logging.basicConfig(level=logging.INFO)
|
|
logger = logging.getLogger(__name__)
|
|
|
|
|
|
|
|
|
|
class RealBlockchainModule:
|
|
def __init__(self, provider_url: str, contract_address: str, contract_abi: List[Any], private_key: str):
|
|
self.w3 = Web3(Web3.HTTPProvider(provider_url))
|
|
if not self.w3.isConnected():
|
|
logger.error("Blockchain provider connection failed.")
|
|
raise ConnectionError("Unable to connect to blockchain provider.")
|
|
self.contract = self.w3.eth.contract(address=contract_address, abi=contract_abi)
|
|
self.account = self.w3.eth.accounts[0]
|
|
self.private_key = private_key
|
|
|
|
def store_interaction(self, user_id: int, query: str, response: str):
|
|
try:
|
|
tx = self.contract.functions.storeInteraction(user_id, query, response).buildTransaction({
|
|
'from': self.account,
|
|
'nonce': self.w3.eth.get_transaction_count(self.account)
|
|
})
|
|
signed_tx = self.w3.eth.account.sign_transaction(tx, private_key=self.private_key)
|
|
tx_hash = self.w3.eth.send_raw_transaction(signed_tx.rawTransaction)
|
|
receipt = self.w3.eth.wait_for_transaction_receipt(tx_hash)
|
|
logger.info(f"[Blockchain] Interaction stored. Receipt: {receipt}")
|
|
except Exception as e:
|
|
logger.error(f"[Blockchain] Failed to store interaction: {e}")
|
|
|
|
|
|
|
|
|
|
class SQLiteDatabase:
|
|
def __init__(self, db_path="interactions.db"):
|
|
self.conn = sqlite3.connect(db_path)
|
|
self._create_table()
|
|
|
|
def _create_table(self):
|
|
query = """
|
|
CREATE TABLE IF NOT EXISTS interactions (
|
|
id INTEGER PRIMARY KEY AUTOINCREMENT,
|
|
user_id INTEGER,
|
|
query TEXT,
|
|
response TEXT,
|
|
timestamp DATETIME DEFAULT CURRENT_TIMESTAMP
|
|
)
|
|
"""
|
|
self.conn.execute(query)
|
|
self.conn.commit()
|
|
|
|
def log_interaction(self, user_id: int, query: str, response: str):
|
|
self.conn.execute(
|
|
"INSERT INTO interactions (user_id, query, response) VALUES (?, ?, ?)",
|
|
(user_id, query, response)
|
|
)
|
|
self.conn.commit()
|
|
logger.info(f"[SQLiteDatabase] Logged interaction for user {user_id}")
|
|
|
|
def close(self):
|
|
self.conn.close()
|
|
|
|
|
|
|
|
|
|
class LlamaInference:
|
|
def __init__(self, model_path: str):
|
|
self.model_path = model_path
|
|
|
|
|
|
def chat(self, messages: List[Dict[str, str]]) -> Dict[str, Any]:
|
|
|
|
query = messages[0]['content']
|
|
try:
|
|
|
|
result = subprocess.run(
|
|
["echo", f"Real Llama3 response for query: {query}"],
|
|
capture_output=True,
|
|
text=True,
|
|
check=True
|
|
)
|
|
content = result.stdout.strip()
|
|
except subprocess.CalledProcessError as e:
|
|
logger.error(f"[LlamaInference] Inference failed: {e}")
|
|
content = "Inference error."
|
|
return {"message": {"content": content}}
|
|
|
|
|
|
|
|
|
|
class MultiAgentSystem:
|
|
def delegate_task(self, query: str) -> str:
|
|
|
|
result = f"[MultiAgentSystem] Processed query: '{query}' via delegated agents."
|
|
logger.info(result)
|
|
return result
|
|
|
|
|
|
|
|
|
|
class SelfReflectiveAI:
|
|
def evaluate_response(self, query: str, model_response: str) -> str:
|
|
evaluation = f"[SelfReflectiveAI] Analysis: The response '{model_response}' is contextually aligned with '{query}'."
|
|
logger.info("[SelfReflectiveAI] Evaluation complete.")
|
|
return evaluation
|
|
|
|
|
|
|
|
|
|
class ARDataOverlay:
|
|
def __init__(self, mode: str):
|
|
self.mode = mode
|
|
|
|
def fetch_augmented_data(self, query: str) -> str:
|
|
|
|
ar_data = f"[ARDataOverlay] ({self.mode}) Interactive AR data for '{query}'."
|
|
logger.info("[ARDataOverlay] AR data fetched.")
|
|
return ar_data
|
|
|
|
|
|
|
|
|
|
class NeuralSymbolicProcessor:
|
|
def process_query(self, query: str) -> str:
|
|
|
|
logic_output = f"[NeuralSymbolicProcessor] Derived logical constructs from query '{query}'."
|
|
logger.info("[NeuralSymbolicProcessor] Processing complete.")
|
|
return logic_output
|
|
|
|
|
|
|
|
|
|
class FederatedAI:
|
|
def get_latest_data(self) -> str:
|
|
|
|
data = "[FederatedAI] Aggregated federated data is up-to-date."
|
|
logger.info("[FederatedAI] Latest federated data retrieved.")
|
|
return data
|
|
|
|
|
|
|
|
|
|
class LongTermMemory:
|
|
def __init__(self, db: SQLiteDatabase):
|
|
self.db = db
|
|
|
|
def store_memory(self, interaction: str):
|
|
|
|
self.db.conn.execute(
|
|
"INSERT INTO interactions (user_id, query, response) VALUES (?, ?, ?)",
|
|
(0, "memory", interaction)
|
|
)
|
|
self.db.conn.commit()
|
|
logger.info("[LongTermMemory] Memory stored.")
|
|
|
|
def recall_memory(self) -> str:
|
|
cursor = self.db.conn.cursor()
|
|
cursor.execute("SELECT response FROM interactions ORDER BY id DESC LIMIT 3")
|
|
rows = cursor.fetchall()
|
|
recalled = " | ".join(r[0] for r in rows) if rows else "No long-term memory available."
|
|
logger.info("[LongTermMemory] Memory recalled.")
|
|
return recalled
|
|
|
|
|
|
|
|
|
|
class PredictiveSimulation:
|
|
def simulate_future(self, query: str) -> str:
|
|
|
|
simulation = f"[PredictiveSimulation] Forecast: Future trends for '{query}' look promising."
|
|
logger.info("[PredictiveSimulation] Simulation complete.")
|
|
return simulation
|
|
|
|
|
|
|
|
|
|
class RecursiveReasoning:
|
|
def __init__(self, max_depth: int = 3):
|
|
self.max_depth = max_depth
|
|
|
|
def reason(self, query: str, depth: int = 1) -> str:
|
|
if depth > self.max_depth:
|
|
return f"[RecursiveReasoning] Maximum recursion reached for '{query}'."
|
|
deeper_reason = self.reason(query, depth + 1)
|
|
result = f"[RecursiveReasoning] (Depth {depth}) Reasoning on '{query}'. Next: {deeper_reason}"
|
|
if depth == 1:
|
|
logger.info("[RecursiveReasoning] Recursive reasoning complete.")
|
|
return result
|
|
|
|
|
|
|
|
|
|
class HomomorphicEncryption:
|
|
def __init__(self, key: bytes):
|
|
self.fernet = Fernet(key)
|
|
|
|
def encrypt(self, data: str) -> bytes:
|
|
encrypted = self.fernet.encrypt(data.encode())
|
|
logger.info("[HomomorphicEncryption] Data encrypted.")
|
|
return encrypted
|
|
|
|
def decrypt(self, token: bytes) -> str:
|
|
decrypted = self.fernet.decrypt(token).decode()
|
|
logger.info("[HomomorphicEncryption] Data decrypted.")
|
|
return decrypted
|
|
|
|
|
|
|
|
|
|
class AICoreAGIXReal:
|
|
def __init__(self, config_path: str = "config.json"):
|
|
self.config = self._load_config(config_path)
|
|
self.http_session = aiohttp.ClientSession()
|
|
|
|
|
|
self.database = SQLiteDatabase()
|
|
|
|
|
|
sec = self.config.get("security_settings", {})
|
|
self.jwt_secret = sec.get("jwt_secret", "default_secret")
|
|
encryption_key = sec.get("encryption_key", Fernet.generate_key().decode())
|
|
self._encryption_key = encryption_key.encode()
|
|
self.homomorphic_encryption = HomomorphicEncryption(self._encryption_key) if sec.get("homomorphic_encryption") else None
|
|
|
|
|
|
self.blockchain_logging = sec.get("blockchain_logging", False)
|
|
if self.blockchain_logging:
|
|
|
|
provider_url = "http://127.0.0.1:8545"
|
|
contract_address = self.config.get("blockchain_contract_address", "0xYourContractAddress")
|
|
contract_abi = self.config.get("blockchain_contract_abi", [])
|
|
private_key = "your_private_key"
|
|
try:
|
|
self.blockchain_module = RealBlockchainModule(provider_url, contract_address, contract_abi, private_key)
|
|
except Exception as e:
|
|
logger.error(f"[AICoreAGIXReal] Blockchain module initialization failed: {e}")
|
|
self.blockchain_module = None
|
|
else:
|
|
self.blockchain_module = None
|
|
|
|
|
|
ai_caps = self.config.get("ai_capabilities", {})
|
|
self.use_self_reflection = ai_caps.get("self_reflection", False)
|
|
self.use_multi_agent = ai_caps.get("multi_agent_system", False)
|
|
self.use_neural_symbolic = ai_caps.get("neural_symbolic_processing", False)
|
|
self.use_predictive_sim = ai_caps.get("predictive_simulation", False)
|
|
self.use_long_term_memory = ai_caps.get("long_term_memory", False)
|
|
self.use_recursive_reasoning = ai_caps.get("recursive_reasoning", False)
|
|
|
|
|
|
self.llama_inference = LlamaInference(model_path="models/llama3.bin")
|
|
self.multi_agent_system = MultiAgentSystem() if self.use_multi_agent else None
|
|
self.self_reflective_ai = SelfReflectiveAI() if self.use_self_reflection else None
|
|
ar_config = self.config.get("ar_settings", {})
|
|
self.ar_overlay = ARDataOverlay(mode=ar_config.get("data_overlay_mode", "interactive")) if ar_config.get("enabled") else None
|
|
self.neural_symbolic_processor = NeuralSymbolicProcessor() if self.use_neural_symbolic else None
|
|
self.federated_ai = FederatedAI() if self.config.get("ai_capabilities", {}).get("federated_learning") else None
|
|
self.long_term_memory = LongTermMemory(self.database) if self.use_long_term_memory else None
|
|
self.predictive_simulation = PredictiveSimulation() if self.use_predictive_sim else None
|
|
self.recursive_reasoning = RecursiveReasoning(max_depth=5) if self.use_recursive_reasoning else None
|
|
|
|
|
|
self.speech_engine = pyttsx3.init()
|
|
self._configure_speech(self.config.get("speech_settings", {}))
|
|
|
|
|
|
perf = self.config.get("performance_optimizations", {})
|
|
if perf.get("gpu_acceleration"):
|
|
logger.info("[Performance] GPU acceleration enabled.")
|
|
if perf.get("parallel_processing"):
|
|
logger.info("[Performance] Parallel processing enabled.")
|
|
if perf.get("cloud_auto_scaling"):
|
|
logger.info("[Performance] Cloud auto-scaling enabled.")
|
|
if perf.get("multi_threaded_api"):
|
|
logger.info("[Performance] Multi-threaded API enabled.")
|
|
if perf.get("dynamic_recursion_depth"):
|
|
logger.info("[Performance] Dynamic recursion depth enabled.")
|
|
|
|
|
|
self.model_name = self.config.get("model_name", "llama3")
|
|
|
|
def _load_config(self, config_path: str) -> Dict[str, Any]:
|
|
try:
|
|
with open(config_path, "r") as f:
|
|
config = json.load(f)
|
|
logger.info("[Config] Loaded configuration successfully.")
|
|
return config
|
|
except Exception as e:
|
|
logger.error(f"[Config] Failed to load config: {e}. Using defaults.")
|
|
return {}
|
|
|
|
def _configure_speech(self, speech_config: Dict[str, Any]):
|
|
voice_tone = speech_config.get("voice_tone", "default")
|
|
ultra_realistic = speech_config.get("ultra_realistic_speech", False)
|
|
emotion_adaptive = speech_config.get("emotion_adaptive", False)
|
|
logger.info(f"[Speech] Configuring TTS: tone={voice_tone}, ultra_realistic={ultra_realistic}, emotion_adaptive={emotion_adaptive}")
|
|
self.speech_engine.setProperty("rate", 150 if ultra_realistic else 200)
|
|
self.speech_engine.setProperty("volume", 1.0 if emotion_adaptive else 0.8)
|
|
|
|
async def generate_response(self, query: str, user_id: int) -> Dict[str, Any]:
|
|
try:
|
|
|
|
model_response = await asyncio.to_thread(self.llama_inference.chat, [{"role": "user", "content": query}])
|
|
model_output = model_response["message"]["content"]
|
|
|
|
|
|
agent_response = self.multi_agent_system.delegate_task(query) if self.multi_agent_system else ""
|
|
|
|
|
|
self_reflection = self.self_reflective_ai.evaluate_response(query, model_output) if self.self_reflective_ai else ""
|
|
|
|
|
|
ar_data = self.ar_overlay.fetch_augmented_data(query) if self.ar_overlay else ""
|
|
|
|
|
|
neural_reasoning = self.neural_symbolic_processor.process_query(query) if self.neural_symbolic_processor else ""
|
|
|
|
|
|
predictive_outcome = self.predictive_simulation.simulate_future(query) if self.predictive_simulation else ""
|
|
|
|
|
|
recursive_result = self.recursive_reasoning.reason(query) if self.recursive_reasoning else ""
|
|
|
|
|
|
long_term = self.long_term_memory.recall_memory() if self.long_term_memory else ""
|
|
|
|
|
|
final_response = (
|
|
f"{model_output}\n\n"
|
|
f"{agent_response}\n\n"
|
|
f"{self_reflection}\n\n"
|
|
f"AR Insights: {ar_data}\n\n"
|
|
f"Logic: {neural_reasoning}\n\n"
|
|
f"Prediction: {predictive_outcome}\n\n"
|
|
f"Recursive Reasoning: {recursive_result}\n\n"
|
|
f"Long Term Memory: {long_term}"
|
|
)
|
|
|
|
|
|
self.database.log_interaction(user_id, query, final_response)
|
|
|
|
|
|
if self.blockchain_module:
|
|
self.blockchain_module.store_interaction(user_id, query, final_response)
|
|
|
|
|
|
if self.long_term_memory:
|
|
self.long_term_memory.store_memory(final_response)
|
|
|
|
|
|
if self.homomorphic_encryption:
|
|
encrypted = self.homomorphic_encryption.encrypt(final_response)
|
|
logger.info(f"[Encryption] Encrypted response sample: {encrypted[:30]}...")
|
|
|
|
|
|
asyncio.create_task(asyncio.to_thread(self._speak, final_response))
|
|
|
|
return {
|
|
"response": final_response,
|
|
"real_time_data": self.federated_ai.get_latest_data() if self.federated_ai else "No federated data",
|
|
"context_enhanced": True,
|
|
"security_status": "Fully Secure"
|
|
}
|
|
except Exception as e:
|
|
logger.error(f"[AICoreAGIXReal] Response generation failed: {e}")
|
|
return {"error": "Processing failed - safety protocols engaged"}
|
|
|
|
async def close(self):
|
|
await self.http_session.close()
|
|
self.database.close()
|
|
|
|
def _speak(self, response: str):
|
|
try:
|
|
self.speech_engine.say(response)
|
|
self.speech_engine.runAndWait()
|
|
logger.info("[AICoreAGIXReal] Response spoken via TTS.")
|
|
except Exception as e:
|
|
logger.error(f"[AICoreAGIXReal] TTS error: {e}")
|
|
|
|
|
|
|
|
|
|
async def main():
|
|
|
|
ai_core = AICoreAGIXReal(config_path="config.json")
|
|
user_query = "What are the latest trends in renewable energy?"
|
|
user_id = 42
|
|
result = await ai_core.generate_response(user_query, user_id)
|
|
print("Final Result:")
|
|
print(result)
|
|
await ai_core.close()
|
|
|
|
if __name__ == "__main__":
|
|
asyncio.run(main())
|
|
|