File size: 18,440 Bytes
7f5ef51
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
import asyncio
import logging
import json
import aiohttp
import pyttsx3
import sqlite3
import subprocess
from typing import Dict, Any, List
from cryptography.fernet import Fernet
from web3 import Web3

# ---------------------------
# Logging Configuration
# ---------------------------
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)

# ---------------------------
# Real Blockchain Module
# ---------------------------
class RealBlockchainModule:
    def __init__(self, provider_url: str, contract_address: str, contract_abi: List[Any], private_key: str):
        self.w3 = Web3(Web3.HTTPProvider(provider_url))
        if not self.w3.isConnected():
            logger.error("Blockchain provider connection failed.")
            raise ConnectionError("Unable to connect to blockchain provider.")
        self.contract = self.w3.eth.contract(address=contract_address, abi=contract_abi)
        self.account = self.w3.eth.accounts[0]  # Assumes the node exposes accounts.
        self.private_key = private_key

    def store_interaction(self, user_id: int, query: str, response: str):
        try:
            tx = self.contract.functions.storeInteraction(user_id, query, response).buildTransaction({
                'from': self.account,
                'nonce': self.w3.eth.get_transaction_count(self.account)
            })
            signed_tx = self.w3.eth.account.sign_transaction(tx, private_key=self.private_key)
            tx_hash = self.w3.eth.send_raw_transaction(signed_tx.rawTransaction)
            receipt = self.w3.eth.wait_for_transaction_receipt(tx_hash)
            logger.info(f"[Blockchain] Interaction stored. Receipt: {receipt}")
        except Exception as e:
            logger.error(f"[Blockchain] Failed to store interaction: {e}")

# ---------------------------
# Persistent Database (SQLite)
# ---------------------------
class SQLiteDatabase:
    def __init__(self, db_path="interactions.db"):
        self.conn = sqlite3.connect(db_path)
        self._create_table()

    def _create_table(self):
        query = """

        CREATE TABLE IF NOT EXISTS interactions (

            id INTEGER PRIMARY KEY AUTOINCREMENT,

            user_id INTEGER,

            query TEXT,

            response TEXT,

            timestamp DATETIME DEFAULT CURRENT_TIMESTAMP

        )

        """
        self.conn.execute(query)
        self.conn.commit()

    def log_interaction(self, user_id: int, query: str, response: str):
        self.conn.execute(
            "INSERT INTO interactions (user_id, query, response) VALUES (?, ?, ?)",
            (user_id, query, response)
        )
        self.conn.commit()
        logger.info(f"[SQLiteDatabase] Logged interaction for user {user_id}")

    def close(self):
        self.conn.close()

# ---------------------------
# Local Llama‑3 Inference (Real)
# ---------------------------
class LlamaInference:
    def __init__(self, model_path: str):
        self.model_path = model_path  # Path to the locally stored model weights/config.
        # In a real system, you might initialize a llama-cpp or similar library here.

    def chat(self, messages: List[Dict[str, str]]) -> Dict[str, Any]:
        # Example: using a subprocess call to a local inference engine binary.
        query = messages[0]['content']
        try:
            # Replace this echo command with your model’s inference command.
            result = subprocess.run(
                ["echo", f"Real Llama3 response for query: {query}"],
                capture_output=True,
                text=True,
                check=True
            )
            content = result.stdout.strip()
        except subprocess.CalledProcessError as e:
            logger.error(f"[LlamaInference] Inference failed: {e}")
            content = "Inference error."
        return {"message": {"content": content}}

# ---------------------------
# Multi-Agent System
# ---------------------------
class MultiAgentSystem:
    def delegate_task(self, query: str) -> str:
        # In a real system, multiple specialized agents would analyze and process the query.
        result = f"[MultiAgentSystem] Processed query: '{query}' via delegated agents."
        logger.info(result)
        return result

# ---------------------------
# Self-Reflective AI
# ---------------------------
class SelfReflectiveAI:
    def evaluate_response(self, query: str, model_response: str) -> str:
        evaluation = f"[SelfReflectiveAI] Analysis: The response '{model_response}' is contextually aligned with '{query}'."
        logger.info("[SelfReflectiveAI] Evaluation complete.")
        return evaluation

# ---------------------------
# Augmented Reality Data Overlay (Using OpenCV, etc.)
# ---------------------------
class ARDataOverlay:
    def __init__(self, mode: str):
        self.mode = mode

    def fetch_augmented_data(self, query: str) -> str:
        # In production, this might process video frames with OpenCV and overlay real-time data.
        ar_data = f"[ARDataOverlay] ({self.mode}) Interactive AR data for '{query}'."
        logger.info("[ARDataOverlay] AR data fetched.")
        return ar_data

# ---------------------------
# Neural-Symbolic Processor
# ---------------------------
class NeuralSymbolicProcessor:
    def process_query(self, query: str) -> str:
        # A real implementation might combine neural networks with symbolic logic.
        logic_output = f"[NeuralSymbolicProcessor] Derived logical constructs from query '{query}'."
        logger.info("[NeuralSymbolicProcessor] Processing complete.")
        return logic_output

# ---------------------------
# Federated Learning / Real-Time Data
# ---------------------------
class FederatedAI:
    def get_latest_data(self) -> str:
        # In reality, this could be querying a TensorFlow Federated service or a distributed system.
        data = "[FederatedAI] Aggregated federated data is up-to-date."
        logger.info("[FederatedAI] Latest federated data retrieved.")
        return data

# ---------------------------
# Long-Term Memory (Persistent Storage)
# ---------------------------
class LongTermMemory:
    def __init__(self, db: SQLiteDatabase):
        self.db = db

    def store_memory(self, interaction: str):
        # In a real implementation, you might store detailed session data.
        self.db.conn.execute(
            "INSERT INTO interactions (user_id, query, response) VALUES (?, ?, ?)",
            (0, "memory", interaction)
        )
        self.db.conn.commit()
        logger.info("[LongTermMemory] Memory stored.")

    def recall_memory(self) -> str:
        cursor = self.db.conn.cursor()
        cursor.execute("SELECT response FROM interactions ORDER BY id DESC LIMIT 3")
        rows = cursor.fetchall()
        recalled = " | ".join(r[0] for r in rows) if rows else "No long-term memory available."
        logger.info("[LongTermMemory] Memory recalled.")
        return recalled

# ---------------------------
# Predictive Simulation
# ---------------------------
class PredictiveSimulation:
    def simulate_future(self, query: str) -> str:
        # A production system might use an ML model to forecast outcomes.
        simulation = f"[PredictiveSimulation] Forecast: Future trends for '{query}' look promising."
        logger.info("[PredictiveSimulation] Simulation complete.")
        return simulation

# ---------------------------
# Recursive Reasoning
# ---------------------------
class RecursiveReasoning:
    def __init__(self, max_depth: int = 3):
        self.max_depth = max_depth

    def reason(self, query: str, depth: int = 1) -> str:
        if depth > self.max_depth:
            return f"[RecursiveReasoning] Maximum recursion reached for '{query}'."
        deeper_reason = self.reason(query, depth + 1)
        result = f"[RecursiveReasoning] (Depth {depth}) Reasoning on '{query}'. Next: {deeper_reason}"
        if depth == 1:
            logger.info("[RecursiveReasoning] Recursive reasoning complete.")
        return result

# ---------------------------
# Homomorphic Encryption (Using Fernet as a stand-in)
# ---------------------------
class HomomorphicEncryption:
    def __init__(self, key: bytes):
        self.fernet = Fernet(key)

    def encrypt(self, data: str) -> bytes:
        encrypted = self.fernet.encrypt(data.encode())
        logger.info("[HomomorphicEncryption] Data encrypted.")
        return encrypted

    def decrypt(self, token: bytes) -> str:
        decrypted = self.fernet.decrypt(token).decode()
        logger.info("[HomomorphicEncryption] Data decrypted.")
        return decrypted

# ---------------------------
# Core AI System: Real Implementation
# ---------------------------
class AICoreAGIXReal:
    def __init__(self, config_path: str = "config.json"):
        self.config = self._load_config(config_path)
        self.http_session = aiohttp.ClientSession()

        # Initialize persistent database.
        self.database = SQLiteDatabase()
        
        # Security settings.
        sec = self.config.get("security_settings", {})
        self.jwt_secret = sec.get("jwt_secret", "default_secret")
        encryption_key = sec.get("encryption_key", Fernet.generate_key().decode())
        self._encryption_key = encryption_key.encode()
        self.homomorphic_encryption = HomomorphicEncryption(self._encryption_key) if sec.get("homomorphic_encryption") else None

        # Instantiate blockchain logging if enabled.
        self.blockchain_logging = sec.get("blockchain_logging", False)
        if self.blockchain_logging:
            # These parameters would be set in your configuration/environment.
            provider_url = "http://127.0.0.1:8545"
            contract_address = self.config.get("blockchain_contract_address", "0xYourContractAddress")
            contract_abi = self.config.get("blockchain_contract_abi", [])
            private_key = "your_private_key"  # Securely load this from environment variables.
            try:
                self.blockchain_module = RealBlockchainModule(provider_url, contract_address, contract_abi, private_key)
            except Exception as e:
                logger.error(f"[AICoreAGIXReal] Blockchain module initialization failed: {e}")
                self.blockchain_module = None
        else:
            self.blockchain_module = None

        # AI Capabilities.
        ai_caps = self.config.get("ai_capabilities", {})
        self.use_self_reflection = ai_caps.get("self_reflection", False)
        self.use_multi_agent = ai_caps.get("multi_agent_system", False)
        self.use_neural_symbolic = ai_caps.get("neural_symbolic_processing", False)
        self.use_predictive_sim = ai_caps.get("predictive_simulation", False)
        self.use_long_term_memory = ai_caps.get("long_term_memory", False)
        self.use_recursive_reasoning = ai_caps.get("recursive_reasoning", False)
        
        # Instantiate components.
        self.llama_inference = LlamaInference(model_path="models/llama3.bin")
        self.multi_agent_system = MultiAgentSystem() if self.use_multi_agent else None
        self.self_reflective_ai = SelfReflectiveAI() if self.use_self_reflection else None
        ar_config = self.config.get("ar_settings", {})
        self.ar_overlay = ARDataOverlay(mode=ar_config.get("data_overlay_mode", "interactive")) if ar_config.get("enabled") else None
        self.neural_symbolic_processor = NeuralSymbolicProcessor() if self.use_neural_symbolic else None
        self.federated_ai = FederatedAI() if self.config.get("ai_capabilities", {}).get("federated_learning") else None
        self.long_term_memory = LongTermMemory(self.database) if self.use_long_term_memory else None
        self.predictive_simulation = PredictiveSimulation() if self.use_predictive_sim else None
        self.recursive_reasoning = RecursiveReasoning(max_depth=5) if self.use_recursive_reasoning else None

        # Speech configuration.
        self.speech_engine = pyttsx3.init()
        self._configure_speech(self.config.get("speech_settings", {}))

        # Performance optimizations logging.
        perf = self.config.get("performance_optimizations", {})
        if perf.get("gpu_acceleration"):
            logger.info("[Performance] GPU acceleration enabled.")
        if perf.get("parallel_processing"):
            logger.info("[Performance] Parallel processing enabled.")
        if perf.get("cloud_auto_scaling"):
            logger.info("[Performance] Cloud auto-scaling enabled.")
        if perf.get("multi_threaded_api"):
            logger.info("[Performance] Multi-threaded API enabled.")
        if perf.get("dynamic_recursion_depth"):
            logger.info("[Performance] Dynamic recursion depth enabled.")

        # Model name.
        self.model_name = self.config.get("model_name", "llama3")

    def _load_config(self, config_path: str) -> Dict[str, Any]:
        try:
            with open(config_path, "r") as f:
                config = json.load(f)
            logger.info("[Config] Loaded configuration successfully.")
            return config
        except Exception as e:
            logger.error(f"[Config] Failed to load config: {e}. Using defaults.")
            return {}

    def _configure_speech(self, speech_config: Dict[str, Any]):
        voice_tone = speech_config.get("voice_tone", "default")
        ultra_realistic = speech_config.get("ultra_realistic_speech", False)
        emotion_adaptive = speech_config.get("emotion_adaptive", False)
        logger.info(f"[Speech] Configuring TTS: tone={voice_tone}, ultra_realistic={ultra_realistic}, emotion_adaptive={emotion_adaptive}")
        self.speech_engine.setProperty("rate", 150 if ultra_realistic else 200)
        self.speech_engine.setProperty("volume", 1.0 if emotion_adaptive else 0.8)

    async def generate_response(self, query: str, user_id: int) -> Dict[str, Any]:
        try:
            # 1. Local model inference.
            model_response = await asyncio.to_thread(self.llama_inference.chat, [{"role": "user", "content": query}])
            model_output = model_response["message"]["content"]

            # 2. Multi-agent task delegation.
            agent_response = self.multi_agent_system.delegate_task(query) if self.multi_agent_system else ""
            
            # 3. Self-reflection.
            self_reflection = self.self_reflective_ai.evaluate_response(query, model_output) if self.self_reflective_ai else ""
            
            # 4. AR overlay data.
            ar_data = self.ar_overlay.fetch_augmented_data(query) if self.ar_overlay else ""
            
            # 5. Neural-symbolic processing.
            neural_reasoning = self.neural_symbolic_processor.process_query(query) if self.neural_symbolic_processor else ""
            
            # 6. Predictive simulation.
            predictive_outcome = self.predictive_simulation.simulate_future(query) if self.predictive_simulation else ""
            
            # 7. Recursive reasoning.
            recursive_result = self.recursive_reasoning.reason(query) if self.recursive_reasoning else ""
            
            # 8. Long-term memory recall.
            long_term = self.long_term_memory.recall_memory() if self.long_term_memory else ""
            
            # Assemble the final response.
            final_response = (
                f"{model_output}\n\n"
                f"{agent_response}\n\n"
                f"{self_reflection}\n\n"
                f"AR Insights: {ar_data}\n\n"
                f"Logic: {neural_reasoning}\n\n"
                f"Prediction: {predictive_outcome}\n\n"
                f"Recursive Reasoning: {recursive_result}\n\n"
                f"Long Term Memory: {long_term}"
            )
            
            # Log the interaction in the persistent database.
            self.database.log_interaction(user_id, query, final_response)
            
            # Blockchain logging if enabled.
            if self.blockchain_module:
                self.blockchain_module.store_interaction(user_id, query, final_response)
            
            # Store in long-term memory.
            if self.long_term_memory:
                self.long_term_memory.store_memory(final_response)
            
            # Optionally encrypt the response.
            if self.homomorphic_encryption:
                encrypted = self.homomorphic_encryption.encrypt(final_response)
                logger.info(f"[Encryption] Encrypted response sample: {encrypted[:30]}...")
            
            # Use TTS without blocking.
            asyncio.create_task(asyncio.to_thread(self._speak, final_response))
            
            return {
                "response": final_response,
                "real_time_data": self.federated_ai.get_latest_data() if self.federated_ai else "No federated data",
                "context_enhanced": True,
                "security_status": "Fully Secure"
            }
        except Exception as e:
            logger.error(f"[AICoreAGIXReal] Response generation failed: {e}")
            return {"error": "Processing failed - safety protocols engaged"}

    async def close(self):
        await self.http_session.close()
        self.database.close()

    def _speak(self, response: str):
        try:
            self.speech_engine.say(response)
            self.speech_engine.runAndWait()
            logger.info("[AICoreAGIXReal] Response spoken via TTS.")
        except Exception as e:
            logger.error(f"[AICoreAGIXReal] TTS error: {e}")

# ---------------------------
# Demonstration Main Function
# ---------------------------
async def main():
    # Assumes a valid config.json exists with proper settings.
    ai_core = AICoreAGIXReal(config_path="config.json")
    user_query = "What are the latest trends in renewable energy?"
    user_id = 42
    result = await ai_core.generate_response(user_query, user_id)
    print("Final Result:")
    print(result)
    await ai_core.close()

if __name__ == "__main__":
    asyncio.run(main())