File size: 18,440 Bytes
7f5ef51 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 |
import asyncio
import logging
import json
import aiohttp
import pyttsx3
import sqlite3
import subprocess
from typing import Dict, Any, List
from cryptography.fernet import Fernet
from web3 import Web3
# ---------------------------
# Logging Configuration
# ---------------------------
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
# ---------------------------
# Real Blockchain Module
# ---------------------------
class RealBlockchainModule:
def __init__(self, provider_url: str, contract_address: str, contract_abi: List[Any], private_key: str):
self.w3 = Web3(Web3.HTTPProvider(provider_url))
if not self.w3.isConnected():
logger.error("Blockchain provider connection failed.")
raise ConnectionError("Unable to connect to blockchain provider.")
self.contract = self.w3.eth.contract(address=contract_address, abi=contract_abi)
self.account = self.w3.eth.accounts[0] # Assumes the node exposes accounts.
self.private_key = private_key
def store_interaction(self, user_id: int, query: str, response: str):
try:
tx = self.contract.functions.storeInteraction(user_id, query, response).buildTransaction({
'from': self.account,
'nonce': self.w3.eth.get_transaction_count(self.account)
})
signed_tx = self.w3.eth.account.sign_transaction(tx, private_key=self.private_key)
tx_hash = self.w3.eth.send_raw_transaction(signed_tx.rawTransaction)
receipt = self.w3.eth.wait_for_transaction_receipt(tx_hash)
logger.info(f"[Blockchain] Interaction stored. Receipt: {receipt}")
except Exception as e:
logger.error(f"[Blockchain] Failed to store interaction: {e}")
# ---------------------------
# Persistent Database (SQLite)
# ---------------------------
class SQLiteDatabase:
def __init__(self, db_path="interactions.db"):
self.conn = sqlite3.connect(db_path)
self._create_table()
def _create_table(self):
query = """
CREATE TABLE IF NOT EXISTS interactions (
id INTEGER PRIMARY KEY AUTOINCREMENT,
user_id INTEGER,
query TEXT,
response TEXT,
timestamp DATETIME DEFAULT CURRENT_TIMESTAMP
)
"""
self.conn.execute(query)
self.conn.commit()
def log_interaction(self, user_id: int, query: str, response: str):
self.conn.execute(
"INSERT INTO interactions (user_id, query, response) VALUES (?, ?, ?)",
(user_id, query, response)
)
self.conn.commit()
logger.info(f"[SQLiteDatabase] Logged interaction for user {user_id}")
def close(self):
self.conn.close()
# ---------------------------
# Local Llama‑3 Inference (Real)
# ---------------------------
class LlamaInference:
def __init__(self, model_path: str):
self.model_path = model_path # Path to the locally stored model weights/config.
# In a real system, you might initialize a llama-cpp or similar library here.
def chat(self, messages: List[Dict[str, str]]) -> Dict[str, Any]:
# Example: using a subprocess call to a local inference engine binary.
query = messages[0]['content']
try:
# Replace this echo command with your model’s inference command.
result = subprocess.run(
["echo", f"Real Llama3 response for query: {query}"],
capture_output=True,
text=True,
check=True
)
content = result.stdout.strip()
except subprocess.CalledProcessError as e:
logger.error(f"[LlamaInference] Inference failed: {e}")
content = "Inference error."
return {"message": {"content": content}}
# ---------------------------
# Multi-Agent System
# ---------------------------
class MultiAgentSystem:
def delegate_task(self, query: str) -> str:
# In a real system, multiple specialized agents would analyze and process the query.
result = f"[MultiAgentSystem] Processed query: '{query}' via delegated agents."
logger.info(result)
return result
# ---------------------------
# Self-Reflective AI
# ---------------------------
class SelfReflectiveAI:
def evaluate_response(self, query: str, model_response: str) -> str:
evaluation = f"[SelfReflectiveAI] Analysis: The response '{model_response}' is contextually aligned with '{query}'."
logger.info("[SelfReflectiveAI] Evaluation complete.")
return evaluation
# ---------------------------
# Augmented Reality Data Overlay (Using OpenCV, etc.)
# ---------------------------
class ARDataOverlay:
def __init__(self, mode: str):
self.mode = mode
def fetch_augmented_data(self, query: str) -> str:
# In production, this might process video frames with OpenCV and overlay real-time data.
ar_data = f"[ARDataOverlay] ({self.mode}) Interactive AR data for '{query}'."
logger.info("[ARDataOverlay] AR data fetched.")
return ar_data
# ---------------------------
# Neural-Symbolic Processor
# ---------------------------
class NeuralSymbolicProcessor:
def process_query(self, query: str) -> str:
# A real implementation might combine neural networks with symbolic logic.
logic_output = f"[NeuralSymbolicProcessor] Derived logical constructs from query '{query}'."
logger.info("[NeuralSymbolicProcessor] Processing complete.")
return logic_output
# ---------------------------
# Federated Learning / Real-Time Data
# ---------------------------
class FederatedAI:
def get_latest_data(self) -> str:
# In reality, this could be querying a TensorFlow Federated service or a distributed system.
data = "[FederatedAI] Aggregated federated data is up-to-date."
logger.info("[FederatedAI] Latest federated data retrieved.")
return data
# ---------------------------
# Long-Term Memory (Persistent Storage)
# ---------------------------
class LongTermMemory:
def __init__(self, db: SQLiteDatabase):
self.db = db
def store_memory(self, interaction: str):
# In a real implementation, you might store detailed session data.
self.db.conn.execute(
"INSERT INTO interactions (user_id, query, response) VALUES (?, ?, ?)",
(0, "memory", interaction)
)
self.db.conn.commit()
logger.info("[LongTermMemory] Memory stored.")
def recall_memory(self) -> str:
cursor = self.db.conn.cursor()
cursor.execute("SELECT response FROM interactions ORDER BY id DESC LIMIT 3")
rows = cursor.fetchall()
recalled = " | ".join(r[0] for r in rows) if rows else "No long-term memory available."
logger.info("[LongTermMemory] Memory recalled.")
return recalled
# ---------------------------
# Predictive Simulation
# ---------------------------
class PredictiveSimulation:
def simulate_future(self, query: str) -> str:
# A production system might use an ML model to forecast outcomes.
simulation = f"[PredictiveSimulation] Forecast: Future trends for '{query}' look promising."
logger.info("[PredictiveSimulation] Simulation complete.")
return simulation
# ---------------------------
# Recursive Reasoning
# ---------------------------
class RecursiveReasoning:
def __init__(self, max_depth: int = 3):
self.max_depth = max_depth
def reason(self, query: str, depth: int = 1) -> str:
if depth > self.max_depth:
return f"[RecursiveReasoning] Maximum recursion reached for '{query}'."
deeper_reason = self.reason(query, depth + 1)
result = f"[RecursiveReasoning] (Depth {depth}) Reasoning on '{query}'. Next: {deeper_reason}"
if depth == 1:
logger.info("[RecursiveReasoning] Recursive reasoning complete.")
return result
# ---------------------------
# Homomorphic Encryption (Using Fernet as a stand-in)
# ---------------------------
class HomomorphicEncryption:
def __init__(self, key: bytes):
self.fernet = Fernet(key)
def encrypt(self, data: str) -> bytes:
encrypted = self.fernet.encrypt(data.encode())
logger.info("[HomomorphicEncryption] Data encrypted.")
return encrypted
def decrypt(self, token: bytes) -> str:
decrypted = self.fernet.decrypt(token).decode()
logger.info("[HomomorphicEncryption] Data decrypted.")
return decrypted
# ---------------------------
# Core AI System: Real Implementation
# ---------------------------
class AICoreAGIXReal:
def __init__(self, config_path: str = "config.json"):
self.config = self._load_config(config_path)
self.http_session = aiohttp.ClientSession()
# Initialize persistent database.
self.database = SQLiteDatabase()
# Security settings.
sec = self.config.get("security_settings", {})
self.jwt_secret = sec.get("jwt_secret", "default_secret")
encryption_key = sec.get("encryption_key", Fernet.generate_key().decode())
self._encryption_key = encryption_key.encode()
self.homomorphic_encryption = HomomorphicEncryption(self._encryption_key) if sec.get("homomorphic_encryption") else None
# Instantiate blockchain logging if enabled.
self.blockchain_logging = sec.get("blockchain_logging", False)
if self.blockchain_logging:
# These parameters would be set in your configuration/environment.
provider_url = "http://127.0.0.1:8545"
contract_address = self.config.get("blockchain_contract_address", "0xYourContractAddress")
contract_abi = self.config.get("blockchain_contract_abi", [])
private_key = "your_private_key" # Securely load this from environment variables.
try:
self.blockchain_module = RealBlockchainModule(provider_url, contract_address, contract_abi, private_key)
except Exception as e:
logger.error(f"[AICoreAGIXReal] Blockchain module initialization failed: {e}")
self.blockchain_module = None
else:
self.blockchain_module = None
# AI Capabilities.
ai_caps = self.config.get("ai_capabilities", {})
self.use_self_reflection = ai_caps.get("self_reflection", False)
self.use_multi_agent = ai_caps.get("multi_agent_system", False)
self.use_neural_symbolic = ai_caps.get("neural_symbolic_processing", False)
self.use_predictive_sim = ai_caps.get("predictive_simulation", False)
self.use_long_term_memory = ai_caps.get("long_term_memory", False)
self.use_recursive_reasoning = ai_caps.get("recursive_reasoning", False)
# Instantiate components.
self.llama_inference = LlamaInference(model_path="models/llama3.bin")
self.multi_agent_system = MultiAgentSystem() if self.use_multi_agent else None
self.self_reflective_ai = SelfReflectiveAI() if self.use_self_reflection else None
ar_config = self.config.get("ar_settings", {})
self.ar_overlay = ARDataOverlay(mode=ar_config.get("data_overlay_mode", "interactive")) if ar_config.get("enabled") else None
self.neural_symbolic_processor = NeuralSymbolicProcessor() if self.use_neural_symbolic else None
self.federated_ai = FederatedAI() if self.config.get("ai_capabilities", {}).get("federated_learning") else None
self.long_term_memory = LongTermMemory(self.database) if self.use_long_term_memory else None
self.predictive_simulation = PredictiveSimulation() if self.use_predictive_sim else None
self.recursive_reasoning = RecursiveReasoning(max_depth=5) if self.use_recursive_reasoning else None
# Speech configuration.
self.speech_engine = pyttsx3.init()
self._configure_speech(self.config.get("speech_settings", {}))
# Performance optimizations logging.
perf = self.config.get("performance_optimizations", {})
if perf.get("gpu_acceleration"):
logger.info("[Performance] GPU acceleration enabled.")
if perf.get("parallel_processing"):
logger.info("[Performance] Parallel processing enabled.")
if perf.get("cloud_auto_scaling"):
logger.info("[Performance] Cloud auto-scaling enabled.")
if perf.get("multi_threaded_api"):
logger.info("[Performance] Multi-threaded API enabled.")
if perf.get("dynamic_recursion_depth"):
logger.info("[Performance] Dynamic recursion depth enabled.")
# Model name.
self.model_name = self.config.get("model_name", "llama3")
def _load_config(self, config_path: str) -> Dict[str, Any]:
try:
with open(config_path, "r") as f:
config = json.load(f)
logger.info("[Config] Loaded configuration successfully.")
return config
except Exception as e:
logger.error(f"[Config] Failed to load config: {e}. Using defaults.")
return {}
def _configure_speech(self, speech_config: Dict[str, Any]):
voice_tone = speech_config.get("voice_tone", "default")
ultra_realistic = speech_config.get("ultra_realistic_speech", False)
emotion_adaptive = speech_config.get("emotion_adaptive", False)
logger.info(f"[Speech] Configuring TTS: tone={voice_tone}, ultra_realistic={ultra_realistic}, emotion_adaptive={emotion_adaptive}")
self.speech_engine.setProperty("rate", 150 if ultra_realistic else 200)
self.speech_engine.setProperty("volume", 1.0 if emotion_adaptive else 0.8)
async def generate_response(self, query: str, user_id: int) -> Dict[str, Any]:
try:
# 1. Local model inference.
model_response = await asyncio.to_thread(self.llama_inference.chat, [{"role": "user", "content": query}])
model_output = model_response["message"]["content"]
# 2. Multi-agent task delegation.
agent_response = self.multi_agent_system.delegate_task(query) if self.multi_agent_system else ""
# 3. Self-reflection.
self_reflection = self.self_reflective_ai.evaluate_response(query, model_output) if self.self_reflective_ai else ""
# 4. AR overlay data.
ar_data = self.ar_overlay.fetch_augmented_data(query) if self.ar_overlay else ""
# 5. Neural-symbolic processing.
neural_reasoning = self.neural_symbolic_processor.process_query(query) if self.neural_symbolic_processor else ""
# 6. Predictive simulation.
predictive_outcome = self.predictive_simulation.simulate_future(query) if self.predictive_simulation else ""
# 7. Recursive reasoning.
recursive_result = self.recursive_reasoning.reason(query) if self.recursive_reasoning else ""
# 8. Long-term memory recall.
long_term = self.long_term_memory.recall_memory() if self.long_term_memory else ""
# Assemble the final response.
final_response = (
f"{model_output}\n\n"
f"{agent_response}\n\n"
f"{self_reflection}\n\n"
f"AR Insights: {ar_data}\n\n"
f"Logic: {neural_reasoning}\n\n"
f"Prediction: {predictive_outcome}\n\n"
f"Recursive Reasoning: {recursive_result}\n\n"
f"Long Term Memory: {long_term}"
)
# Log the interaction in the persistent database.
self.database.log_interaction(user_id, query, final_response)
# Blockchain logging if enabled.
if self.blockchain_module:
self.blockchain_module.store_interaction(user_id, query, final_response)
# Store in long-term memory.
if self.long_term_memory:
self.long_term_memory.store_memory(final_response)
# Optionally encrypt the response.
if self.homomorphic_encryption:
encrypted = self.homomorphic_encryption.encrypt(final_response)
logger.info(f"[Encryption] Encrypted response sample: {encrypted[:30]}...")
# Use TTS without blocking.
asyncio.create_task(asyncio.to_thread(self._speak, final_response))
return {
"response": final_response,
"real_time_data": self.federated_ai.get_latest_data() if self.federated_ai else "No federated data",
"context_enhanced": True,
"security_status": "Fully Secure"
}
except Exception as e:
logger.error(f"[AICoreAGIXReal] Response generation failed: {e}")
return {"error": "Processing failed - safety protocols engaged"}
async def close(self):
await self.http_session.close()
self.database.close()
def _speak(self, response: str):
try:
self.speech_engine.say(response)
self.speech_engine.runAndWait()
logger.info("[AICoreAGIXReal] Response spoken via TTS.")
except Exception as e:
logger.error(f"[AICoreAGIXReal] TTS error: {e}")
# ---------------------------
# Demonstration Main Function
# ---------------------------
async def main():
# Assumes a valid config.json exists with proper settings.
ai_core = AICoreAGIXReal(config_path="config.json")
user_query = "What are the latest trends in renewable energy?"
user_id = 42
result = await ai_core.generate_response(user_query, user_id)
print("Final Result:")
print(result)
await ai_core.close()
if __name__ == "__main__":
asyncio.run(main())
|