CrossFlow / utils.py
QHL067's picture
working
f9567e5
"""
This file contains some tools
"""
import torch
import torch.nn as nn
import numpy as np
import os
from tqdm import tqdm
from torchvision import transforms
from torchvision.utils import save_image
from absl import logging
from PIL import Image, ImageDraw, ImageFont
import textwrap
def save_image_with_caption(image_tensor, caption, filename, font_size=20, font_path='/usr/share/fonts/truetype/dejavu/DejaVuSans.ttf'):
"""
Save an image with a caption
"""
image_tensor = image_tensor.clone().detach()
image_tensor = torch.clamp(image_tensor, min=0, max=1)
image_pil = transforms.ToPILImage()(image_tensor)
draw = ImageDraw.Draw(image_pil)
font = ImageFont.truetype(font_path, font_size)
wrap_text = textwrap.wrap(caption, width=len(caption)//4 + 1)
text_sizes = [draw.textsize(line, font=font) for line in wrap_text]
max_text_width = max(size[0] for size in text_sizes)
total_text_height = sum(size[1] for size in text_sizes) + 15
new_height = image_pil.height + total_text_height + 25
new_image = Image.new('RGB', (image_pil.width, new_height), 'white')
new_image.paste(image_pil, (0, 0))
current_y = image_pil.height + 5
draw = ImageDraw.Draw(new_image)
for line, size in zip(wrap_text, text_sizes):
x = (new_image.width - size[0]) / 2
draw.text((x, current_y), line, font=font, fill='black')
current_y += size[1] + 5
new_image.save(filename)
def set_logger(log_level='info', fname=None):
import logging as _logging
handler = logging.get_absl_handler()
formatter = _logging.Formatter('%(asctime)s - %(filename)s - %(message)s')
handler.setFormatter(formatter)
logging.set_verbosity(log_level)
if fname is not None:
handler = _logging.FileHandler(fname)
handler.setFormatter(formatter)
logging.get_absl_logger().addHandler(handler)
def dct2str(dct):
return str({k: f'{v:.6g}' for k, v in dct.items()})
def get_nnet(name, **kwargs):
if name == 'dimr':
from libs.model.dimr_t2i import MRModel
return MRModel(kwargs["model_args"])
elif name == 'dit':
from libs.model.dit_t2i import DiT_H_2
return DiT_H_2(kwargs["model_args"])
else:
raise NotImplementedError(name)
def set_seed(seed: int):
if seed is not None:
torch.manual_seed(seed)
np.random.seed(seed)
def get_optimizer(params, name, **kwargs):
if name == 'adam':
from torch.optim import Adam
return Adam(params, **kwargs)
elif name == 'adamw':
from torch.optim import AdamW
return AdamW(params, **kwargs)
else:
raise NotImplementedError(name)
def customized_lr_scheduler(optimizer, warmup_steps=-1):
from torch.optim.lr_scheduler import LambdaLR
def fn(step):
if warmup_steps > 0:
return min(step / warmup_steps, 1)
else:
return 1
return LambdaLR(optimizer, fn)
def get_lr_scheduler(optimizer, name, **kwargs):
if name == 'customized':
return customized_lr_scheduler(optimizer, **kwargs)
elif name == 'cosine':
from torch.optim.lr_scheduler import CosineAnnealingLR
return CosineAnnealingLR(optimizer, **kwargs)
else:
raise NotImplementedError(name)
def ema(model_dest: nn.Module, model_src: nn.Module, rate):
param_dict_src = dict(model_src.named_parameters())
for p_name, p_dest in model_dest.named_parameters():
p_src = param_dict_src[p_name]
assert p_src is not p_dest
p_dest.data.mul_(rate).add_((1 - rate) * p_src.data)
class TrainState(object):
def __init__(self, optimizer, lr_scheduler, step, nnet=None, nnet_ema=None):
self.optimizer = optimizer
self.lr_scheduler = lr_scheduler
self.step = step
self.nnet = nnet
self.nnet_ema = nnet_ema
def ema_update(self, rate=0.9999):
if self.nnet_ema is not None:
ema(self.nnet_ema, self.nnet, rate)
def save(self, path):
os.makedirs(path, exist_ok=True)
torch.save(self.step, os.path.join(path, 'step.pth'))
for key, val in self.__dict__.items():
if key != 'step' and val is not None:
torch.save(val.state_dict(), os.path.join(path, f'{key}.pth'))
def load(self, path):
logging.info(f'load from {path}')
self.step = torch.load(os.path.join(path, 'step.pth'))
for key, val in self.__dict__.items():
if key != 'step' and val is not None:
val.load_state_dict(torch.load(os.path.join(path, f'{key}.pth'), map_location='cpu'))
def resume(self, ckpt_root, step=None):
if not os.path.exists(ckpt_root):
return
if step is None:
ckpts = list(filter(lambda x: '.ckpt' in x, os.listdir(ckpt_root)))
if not ckpts:
return
steps = map(lambda x: int(x.split(".")[0]), ckpts)
step = max(steps)
ckpt_path = os.path.join(ckpt_root, f'{step}.ckpt')
logging.info(f'resume from {ckpt_path}')
self.load(ckpt_path)
def to(self, device):
for key, val in self.__dict__.items():
if isinstance(val, nn.Module):
val.to(device)
def trainable_parameters(nnet):
params_decay = []
params_nodecay = []
for name, param in nnet.named_parameters():
if name.endswith(".nodecay_weight") or name.endswith(".nodecay_bias"):
params_nodecay.append(param)
else:
params_decay.append(param)
print("params_decay", len(params_decay))
print("params_nodecay", len(params_nodecay))
params = [
{'params': params_decay},
{'params': params_nodecay, 'weight_decay': 0.0}
]
return params
def initialize_train_state(config, device):
nnet = get_nnet(**config.nnet)
nnet_ema = get_nnet(**config.nnet)
nnet_ema.eval()
optimizer = get_optimizer(trainable_parameters(nnet), **config.optimizer)
lr_scheduler = get_lr_scheduler(optimizer, **config.lr_scheduler)
train_state = TrainState(optimizer=optimizer, lr_scheduler=lr_scheduler, step=0,
nnet=nnet, nnet_ema=nnet_ema)
train_state.ema_update(0)
train_state.to(device)
return train_state
def amortize(n_samples, batch_size):
k = n_samples // batch_size
r = n_samples % batch_size
return k * [batch_size] if r == 0 else k * [batch_size] + [r]
def sample2dir(accelerator, path, n_samples, mini_batch_size, sample_fn, unpreprocess_fn=None, return_clipScore=False, ClipSocre_model=None, config=None):
os.makedirs(path, exist_ok=True)
idx = 0
batch_size = mini_batch_size * accelerator.num_processes
clip_score_list = []
if return_clipScore:
assert ClipSocre_model is not None
for _batch_size in tqdm(amortize(n_samples, batch_size), disable=not accelerator.is_main_process, desc='sample2dir'):
samples, clip_score = sample_fn(mini_batch_size, return_clipScore=return_clipScore, ClipSocre_model=ClipSocre_model, config=config)
samples = unpreprocess_fn(samples)
samples = accelerator.gather(samples.contiguous())[:_batch_size]
clip_score_list.append(accelerator.gather(clip_score)[:_batch_size])
if accelerator.is_main_process:
for sample in samples:
save_image(sample, os.path.join(path, f"{idx}.png"))
idx += 1
if return_clipScore:
return clip_score_list
else:
return None
def sample2dir_wCLIP(accelerator, path, n_samples, mini_batch_size, sample_fn, unpreprocess_fn=None, return_clipScore=False, ClipSocre_model=None, config=None):
os.makedirs(path, exist_ok=True)
idx = 0
batch_size = mini_batch_size * accelerator.num_processes
clip_score_list = []
if return_clipScore:
assert ClipSocre_model is not None
for _batch_size in amortize(n_samples, batch_size):
samples, clip_score = sample_fn(mini_batch_size, return_clipScore=return_clipScore, ClipSocre_model=ClipSocre_model, config=config)
samples = unpreprocess_fn(samples)
samples = accelerator.gather(samples.contiguous())[:_batch_size]
clip_score_list.append(accelerator.gather(clip_score)[:_batch_size])
if accelerator.is_main_process:
for sample in samples:
save_image(sample, os.path.join(path, f"{idx}.png"))
idx += 1
break
if return_clipScore:
return clip_score_list
else:
return None
def sample2dir_wPrompt(accelerator, path, n_samples, mini_batch_size, sample_fn, unpreprocess_fn=None, config=None):
os.makedirs(path, exist_ok=True)
idx = 0
batch_size = mini_batch_size * accelerator.num_processes
for _batch_size in tqdm(amortize(n_samples, batch_size), disable=not accelerator.is_main_process, desc='sample2dir'):
samples, samples_caption = sample_fn(mini_batch_size, return_caption=True, config=config)
samples = unpreprocess_fn(samples)
samples = accelerator.gather(samples.contiguous())[:_batch_size]
if accelerator.is_main_process:
for sample, caption in zip(samples,samples_caption):
try:
save_image_with_caption(sample, caption, os.path.join(path, f"{idx}.png"))
except:
save_image(sample, os.path.join(path, f"{idx}.png"))
idx += 1
def grad_norm(model):
total_norm = 0.
for p in model.parameters():
param_norm = p.grad.data.norm(2)
total_norm += param_norm.item() ** 2
total_norm = total_norm ** (1. / 2)
return total_norm