File size: 9,738 Bytes
f9567e5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
"""
This file contains some tools
"""
import torch
import torch.nn as nn
import numpy as np
import os
from tqdm import tqdm
from torchvision import transforms
from torchvision.utils import save_image
from absl import logging
from PIL import Image, ImageDraw, ImageFont
import textwrap

def save_image_with_caption(image_tensor, caption, filename, font_size=20, font_path='/usr/share/fonts/truetype/dejavu/DejaVuSans.ttf'):
    """
    Save an image with a caption
    """
    image_tensor = image_tensor.clone().detach()
    image_tensor = torch.clamp(image_tensor, min=0, max=1)
    image_pil = transforms.ToPILImage()(image_tensor)
    draw = ImageDraw.Draw(image_pil)

    font = ImageFont.truetype(font_path, font_size)
    wrap_text = textwrap.wrap(caption, width=len(caption)//4 + 1)
    text_sizes = [draw.textsize(line, font=font) for line in wrap_text]
    max_text_width = max(size[0] for size in text_sizes)
    total_text_height = sum(size[1] for size in text_sizes) + 15

    new_height = image_pil.height + total_text_height + 25 
    new_image = Image.new('RGB', (image_pil.width, new_height), 'white')
    new_image.paste(image_pil, (0, 0))
    current_y = image_pil.height + 5
    draw = ImageDraw.Draw(new_image)

    for line, size in zip(wrap_text, text_sizes):
        x = (new_image.width - size[0]) / 2
        draw.text((x, current_y), line, font=font, fill='black')
        current_y += size[1] + 5
    new_image.save(filename)


def set_logger(log_level='info', fname=None):
    import logging as _logging
    handler = logging.get_absl_handler()
    formatter = _logging.Formatter('%(asctime)s - %(filename)s - %(message)s')
    handler.setFormatter(formatter)
    logging.set_verbosity(log_level)
    if fname is not None:
        handler = _logging.FileHandler(fname)
        handler.setFormatter(formatter)
        logging.get_absl_logger().addHandler(handler)


def dct2str(dct):
    return str({k: f'{v:.6g}' for k, v in dct.items()})


def get_nnet(name, **kwargs):
    if name == 'dimr':
        from libs.model.dimr_t2i import MRModel
        return MRModel(kwargs["model_args"])
    elif name == 'dit':
        from libs.model.dit_t2i import DiT_H_2
        return DiT_H_2(kwargs["model_args"])
    else:
        raise NotImplementedError(name)


def set_seed(seed: int):
    if seed is not None:
        torch.manual_seed(seed)
        np.random.seed(seed)


def get_optimizer(params, name, **kwargs):
    if name == 'adam':
        from torch.optim import Adam
        return Adam(params, **kwargs)
    elif name == 'adamw':
        from torch.optim import AdamW
        return AdamW(params, **kwargs)
    else:
        raise NotImplementedError(name)


def customized_lr_scheduler(optimizer, warmup_steps=-1):
    from torch.optim.lr_scheduler import LambdaLR
    def fn(step):
        if warmup_steps > 0:
            return min(step / warmup_steps, 1)
        else:
            return 1
    return LambdaLR(optimizer, fn)


def get_lr_scheduler(optimizer, name, **kwargs):
    if name == 'customized':
        return customized_lr_scheduler(optimizer, **kwargs)
    elif name == 'cosine':
        from torch.optim.lr_scheduler import CosineAnnealingLR
        return CosineAnnealingLR(optimizer, **kwargs)
    else:
        raise NotImplementedError(name)


def ema(model_dest: nn.Module, model_src: nn.Module, rate):
    param_dict_src = dict(model_src.named_parameters())
    for p_name, p_dest in model_dest.named_parameters():
        p_src = param_dict_src[p_name]
        assert p_src is not p_dest
        p_dest.data.mul_(rate).add_((1 - rate) * p_src.data)


class TrainState(object):
    def __init__(self, optimizer, lr_scheduler, step, nnet=None, nnet_ema=None):
        self.optimizer = optimizer
        self.lr_scheduler = lr_scheduler
        self.step = step
        self.nnet = nnet
        self.nnet_ema = nnet_ema

    def ema_update(self, rate=0.9999):
        if self.nnet_ema is not None:
            ema(self.nnet_ema, self.nnet, rate)

    def save(self, path):
        os.makedirs(path, exist_ok=True)
        torch.save(self.step, os.path.join(path, 'step.pth'))
        for key, val in self.__dict__.items():
            if key != 'step' and val is not None:
                torch.save(val.state_dict(), os.path.join(path, f'{key}.pth'))

    def load(self, path):
        logging.info(f'load from {path}')
        self.step = torch.load(os.path.join(path, 'step.pth'))
        for key, val in self.__dict__.items():
            if key != 'step' and val is not None:
                val.load_state_dict(torch.load(os.path.join(path, f'{key}.pth'), map_location='cpu'))

    def resume(self, ckpt_root, step=None):
        if not os.path.exists(ckpt_root):
            return
        if step is None:
            ckpts = list(filter(lambda x: '.ckpt' in x, os.listdir(ckpt_root)))
            if not ckpts:
                return
            steps = map(lambda x: int(x.split(".")[0]), ckpts)
            step = max(steps)
        ckpt_path = os.path.join(ckpt_root, f'{step}.ckpt')
        logging.info(f'resume from {ckpt_path}')
        self.load(ckpt_path)

    def to(self, device):
        for key, val in self.__dict__.items():
            if isinstance(val, nn.Module):
                val.to(device)


def trainable_parameters(nnet):
    params_decay = []
    params_nodecay = []
    for name, param in nnet.named_parameters():
        if name.endswith(".nodecay_weight") or name.endswith(".nodecay_bias"):
            params_nodecay.append(param)
        else:
            params_decay.append(param)
    print("params_decay", len(params_decay))
    print("params_nodecay", len(params_nodecay))
    params = [
        {'params': params_decay},
        {'params': params_nodecay, 'weight_decay': 0.0}
    ]
    return params


def initialize_train_state(config, device):

    nnet = get_nnet(**config.nnet)
    nnet_ema = get_nnet(**config.nnet)
    nnet_ema.eval()

    optimizer = get_optimizer(trainable_parameters(nnet), **config.optimizer)
    lr_scheduler = get_lr_scheduler(optimizer, **config.lr_scheduler)

    train_state = TrainState(optimizer=optimizer, lr_scheduler=lr_scheduler, step=0,
                             nnet=nnet, nnet_ema=nnet_ema)
    train_state.ema_update(0)
    train_state.to(device)
    return train_state


def amortize(n_samples, batch_size):
    k = n_samples // batch_size
    r = n_samples % batch_size
    return k * [batch_size] if r == 0 else k * [batch_size] + [r]


def sample2dir(accelerator, path, n_samples, mini_batch_size, sample_fn, unpreprocess_fn=None, return_clipScore=False, ClipSocre_model=None, config=None):
    os.makedirs(path, exist_ok=True)
    idx = 0
    batch_size = mini_batch_size * accelerator.num_processes
    clip_score_list = []

    if return_clipScore:
        assert ClipSocre_model is not None

    for _batch_size in tqdm(amortize(n_samples, batch_size), disable=not accelerator.is_main_process, desc='sample2dir'):
        samples, clip_score = sample_fn(mini_batch_size, return_clipScore=return_clipScore, ClipSocre_model=ClipSocre_model, config=config)
        samples = unpreprocess_fn(samples)
        samples = accelerator.gather(samples.contiguous())[:_batch_size]
        clip_score_list.append(accelerator.gather(clip_score)[:_batch_size])
        if accelerator.is_main_process:
            for sample in samples:
                save_image(sample, os.path.join(path, f"{idx}.png"))
                idx += 1
        
    if return_clipScore:
        return clip_score_list
    else:
        return None


def sample2dir_wCLIP(accelerator, path, n_samples, mini_batch_size, sample_fn, unpreprocess_fn=None, return_clipScore=False, ClipSocre_model=None, config=None):
    os.makedirs(path, exist_ok=True)
    idx = 0
    batch_size = mini_batch_size * accelerator.num_processes
    clip_score_list = []

    if return_clipScore:
        assert ClipSocre_model is not None

    for _batch_size in amortize(n_samples, batch_size):
        samples, clip_score = sample_fn(mini_batch_size, return_clipScore=return_clipScore, ClipSocre_model=ClipSocre_model, config=config)
        samples = unpreprocess_fn(samples)
        samples = accelerator.gather(samples.contiguous())[:_batch_size]
        clip_score_list.append(accelerator.gather(clip_score)[:_batch_size])
        if accelerator.is_main_process:
            for sample in samples:
                save_image(sample, os.path.join(path, f"{idx}.png"))
                idx += 1
        break
        
    if return_clipScore:
        return clip_score_list
    else:
        return None


def sample2dir_wPrompt(accelerator, path, n_samples, mini_batch_size, sample_fn, unpreprocess_fn=None, config=None):
    os.makedirs(path, exist_ok=True)
    idx = 0
    batch_size = mini_batch_size * accelerator.num_processes
    
    for _batch_size in tqdm(amortize(n_samples, batch_size), disable=not accelerator.is_main_process, desc='sample2dir'):
        samples, samples_caption = sample_fn(mini_batch_size, return_caption=True, config=config)
        samples = unpreprocess_fn(samples)
        samples = accelerator.gather(samples.contiguous())[:_batch_size]
        if accelerator.is_main_process:
            for sample, caption in zip(samples,samples_caption):
                try:
                    save_image_with_caption(sample, caption, os.path.join(path, f"{idx}.png"))
                except:
                    save_image(sample, os.path.join(path, f"{idx}.png"))
                idx += 1


def grad_norm(model):
    total_norm = 0.
    for p in model.parameters():
        param_norm = p.grad.data.norm(2)
        total_norm += param_norm.item() ** 2
    total_norm = total_norm ** (1. / 2)
    return total_norm