CrossFlow / train_t2i.py
QHL067's picture
working
f9567e5
import ml_collections
import torch
from torch import multiprocessing as mp
from datasets import get_dataset
from torchvision.utils import make_grid, save_image
import utils
import einops
from torch.utils._pytree import tree_map
import accelerate
from torch.utils.data import DataLoader
from tqdm.auto import tqdm
import tempfile
from absl import logging
import builtins
import os
import wandb
import numpy as np
import time
import random
import libs.autoencoder
from libs.t5 import T5Embedder
from libs.clip import FrozenCLIPEmbedder
from diffusion.flow_matching import FlowMatching, ODEFlowMatchingSolver, ODEEulerFlowMatchingSolver
from tools.fid_score import calculate_fid_given_paths
from tools.clip_score import ClipSocre
def train(config):
if config.get('benchmark', False):
torch.backends.cudnn.benchmark = True
torch.backends.cudnn.deterministic = False
mp.set_start_method('spawn')
accelerator = accelerate.Accelerator()
device = accelerator.device
accelerate.utils.set_seed(config.seed, device_specific=True)
logging.info(f'Process {accelerator.process_index} using device: {device}')
config.mixed_precision = accelerator.mixed_precision
config = ml_collections.FrozenConfigDict(config)
assert config.train.batch_size % accelerator.num_processes == 0
mini_batch_size = config.train.batch_size // accelerator.num_processes
if accelerator.is_main_process:
os.makedirs(config.ckpt_root, exist_ok=True)
os.makedirs(config.sample_dir, exist_ok=True)
accelerator.wait_for_everyone()
if accelerator.is_main_process:
wandb.init(dir=os.path.abspath(config.workdir), project=f'uvit_{config.dataset.name}', config=config.to_dict(),
name=config.hparams, job_type='train', mode='offline')
utils.set_logger(log_level='info', fname=os.path.join(config.workdir, 'output.log'))
logging.info(config)
else:
utils.set_logger(log_level='error')
builtins.print = lambda *args: None
logging.info(f'Run on {accelerator.num_processes} devices')
dataset = get_dataset(**config.dataset)
assert os.path.exists(dataset.fid_stat)
gpu_model = torch.cuda.get_device_name(torch.cuda.current_device())
num_workers = 8
train_dataset = dataset.get_split(split='train', labeled=True)
train_dataset_loader = DataLoader(train_dataset, batch_size=mini_batch_size, shuffle=True, drop_last=True,
num_workers=num_workers, pin_memory=True, persistent_workers=True)
test_dataset = dataset.get_split(split='test', labeled=True) # for sampling
test_dataset_loader = DataLoader(test_dataset, batch_size=config.sample.mini_batch_size, shuffle=True, drop_last=True,
num_workers=num_workers, pin_memory=True, persistent_workers=True)
train_state = utils.initialize_train_state(config, device)
nnet, nnet_ema, optimizer, train_dataset_loader, test_dataset_loader = accelerator.prepare(
train_state.nnet, train_state.nnet_ema, train_state.optimizer, train_dataset_loader, test_dataset_loader)
lr_scheduler = train_state.lr_scheduler
train_state.resume(config.ckpt_root)
autoencoder = libs.autoencoder.get_model(**config.autoencoder)
autoencoder.to(device)
if config.nnet.model_args.clip_dim == 4096:
llm = "t5"
t5 = T5Embedder(device=device)
elif config.nnet.model_args.clip_dim == 768:
llm = "clip"
clip = FrozenCLIPEmbedder()
clip.eval()
clip.to(device)
else:
raise NotImplementedError
ss_empty_context = None
ClipSocre_model = ClipSocre(device=device)
@ torch.cuda.amp.autocast()
def encode(_batch):
return autoencoder.encode(_batch)
@ torch.cuda.amp.autocast()
def decode(_batch):
return autoencoder.decode(_batch)
def get_data_generator():
while True:
for data in tqdm(train_dataset_loader, disable=not accelerator.is_main_process, desc='epoch'):
yield data
data_generator = get_data_generator()
def get_context_generator(autoencoder):
while True:
for data in test_dataset_loader:
if len(data) == 5:
_img, _context, _token_mask, _token, _caption = data
else:
_img, _context = data
_token_mask = None
_token = None
_caption = None
if len(_img.shape)==5:
_testbatch_img_blurred = autoencoder.sample(_img[:,1,:])
yield _context, _token_mask, _token, _caption, _testbatch_img_blurred
else:
assert len(_img.shape)==4
yield _context, _token_mask, _token, _caption, None
context_generator = get_context_generator(autoencoder)
_flow_mathcing_model = FlowMatching()
def train_step(_batch, _ss_empty_context):
_metrics = dict()
optimizer.zero_grad()
assert len(_batch)==6
assert not config.dataset.cfg
_batch_img = _batch[0]
_batch_con = _batch[1]
_batch_mask = _batch[2]
_batch_token = _batch[3]
_batch_caption = _batch[4]
_batch_img_ori = _batch[5]
_z = autoencoder.sample(_batch_img)
loss, loss_dict = _flow_mathcing_model(_z, nnet, loss_coeffs=config.loss_coeffs, cond=_batch_con, con_mask=_batch_mask, batch_img_clip=_batch_img_ori, \
nnet_style=config.nnet.name, text_token=_batch_token, model_config=config.nnet.model_args, all_config=config, training_step=train_state.step)
_metrics['loss'] = accelerator.gather(loss.detach()).mean()
for key in loss_dict.keys():
_metrics[key] = accelerator.gather(loss_dict[key].detach()).mean()
accelerator.backward(loss.mean())
optimizer.step()
lr_scheduler.step()
train_state.ema_update(config.get('ema_rate', 0.9999))
train_state.step += 1
return dict(lr=train_state.optimizer.param_groups[0]['lr'], **_metrics)
def ode_fm_solver_sample(nnet_ema, _n_samples, _sample_steps, context=None, caption=None, testbatch_img_blurred=None, two_stage_generation=-1, token_mask=None, return_clipScore=False, ClipSocre_model=None):
with torch.no_grad():
_z_gaussian = torch.randn(_n_samples, *config.z_shape, device=device)
_z_x0, _mu, _log_var = nnet_ema(context, text_encoder = True, shape = _z_gaussian.shape, mask=token_mask)
_z_init = _z_x0.reshape(_z_gaussian.shape)
assert config.sample.scale > 1
_cfg = config.sample.scale
has_null_indicator = hasattr(config.nnet.model_args, "cfg_indicator")
ode_solver = ODEEulerFlowMatchingSolver(nnet_ema, step_size_type="step_in_dsigma", guidance_scale=_cfg)
_z, _ = ode_solver.sample(x_T=_z_init, batch_size=_n_samples, sample_steps=_sample_steps, unconditional_guidance_scale=_cfg, has_null_indicator=has_null_indicator)
image_unprocessed = decode(_z)
if return_clipScore:
clip_score = ClipSocre_model.calculate_clip_score(caption, image_unprocessed)
return image_unprocessed, clip_score
else:
return image_unprocessed
def eval_step(n_samples, sample_steps):
logging.info(f'eval_step: n_samples={n_samples}, sample_steps={sample_steps}, algorithm=ODE_Euler_Flow_Matching_Solver, '
f'mini_batch_size={config.sample.mini_batch_size}')
def sample_fn(_n_samples, return_caption=False, return_clipScore=False, ClipSocre_model=None, config=None):
_context, _token_mask, _token, _caption, _testbatch_img_blurred = next(context_generator)
assert _context.size(0) == _n_samples
assert not return_caption # during training we should not use this
if return_caption:
return ode_fm_solver_sample(nnet_ema, _n_samples, sample_steps, context=_context, token_mask=_token_mask), _caption
elif return_clipScore:
return ode_fm_solver_sample(nnet_ema, _n_samples, sample_steps, context=_context, token_mask=_token_mask, return_clipScore=return_clipScore, ClipSocre_model=ClipSocre_model, caption=_caption)
else:
return ode_fm_solver_sample(nnet_ema, _n_samples, sample_steps, context=_context, token_mask=_token_mask)
with tempfile.TemporaryDirectory() as temp_path:
path = config.sample.path or temp_path
if accelerator.is_main_process:
os.makedirs(path, exist_ok=True)
clip_score_list = utils.sample2dir(accelerator, path, n_samples, config.sample.mini_batch_size, sample_fn, dataset.unpreprocess, return_clipScore=True, ClipSocre_model=ClipSocre_model, config=config)
_fid = 0
if accelerator.is_main_process:
_fid = calculate_fid_given_paths((dataset.fid_stat, path))
_clip_score_list = torch.cat(clip_score_list)
logging.info(f'step={train_state.step} fid{n_samples}={_fid} clip_score{len(_clip_score_list)} = {_clip_score_list.mean().item()}')
with open(os.path.join(config.workdir, 'eval.log'), 'a') as f:
print(f'step={train_state.step} fid{n_samples}={_fid} clip_score{len(_clip_score_list)} = {_clip_score_list.mean().item()}', file=f)
wandb.log({f'fid{n_samples}': _fid}, step=train_state.step)
_fid = torch.tensor(_fid, device=device)
_fid = accelerator.reduce(_fid, reduction='sum')
return _fid.item()
logging.info(f'Start fitting, step={train_state.step}, mixed_precision={config.mixed_precision}')
step_fid = []
while train_state.step < config.train.n_steps:
nnet.train()
batch = tree_map(lambda x: x, next(data_generator))
metrics = train_step(batch, ss_empty_context)
nnet.eval()
if accelerator.is_main_process and train_state.step % config.train.log_interval == 0:
logging.info(utils.dct2str(dict(step=train_state.step, **metrics)))
logging.info(config.workdir)
wandb.log(metrics, step=train_state.step)
############# save rigid image
if train_state.step % config.train.eval_interval == 0:
torch.cuda.empty_cache()
logging.info('Save a grid of images...')
if hasattr(dataset, "token_embedding"):
contexts = torch.tensor(dataset.token_embedding, device=device)[ : config.train.n_samples_eval]
token_mask = torch.tensor(dataset.token_mask, device=device)[ : config.train.n_samples_eval]
elif hasattr(dataset, "contexts"):
contexts = torch.tensor(dataset.contexts, device=device)[ : config.train.n_samples_eval]
token_mask = None
else:
raise NotImplementedError
samples = ode_fm_solver_sample(nnet_ema, _n_samples=config.train.n_samples_eval, _sample_steps=50, context=contexts, token_mask=token_mask)
samples = make_grid(dataset.unpreprocess(samples), 5)
if accelerator.is_main_process:
save_image(samples, os.path.join(config.sample_dir, f'{train_state.step}.png'))
wandb.log({'samples': wandb.Image(samples)}, step=train_state.step)
accelerator.wait_for_everyone()
torch.cuda.empty_cache()
############ save checkpoint and evaluate results
if train_state.step % config.train.save_interval == 0 or train_state.step == config.train.n_steps:
torch.cuda.empty_cache()
logging.info(f'Save and eval checkpoint {train_state.step}...')
if accelerator.local_process_index == 0:
train_state.save(os.path.join(config.ckpt_root, f'{train_state.step}.ckpt'))
accelerator.wait_for_everyone()
fid = eval_step(n_samples=10000, sample_steps=50) # calculate fid of the saved checkpoint
step_fid.append((train_state.step, fid))
torch.cuda.empty_cache()
accelerator.wait_for_everyone()
logging.info(f'Finish fitting, step={train_state.step}')
logging.info(f'step_fid: {step_fid}')
step_best = sorted(step_fid, key=lambda x: x[1])[0][0]
logging.info(f'step_best: {step_best}')
train_state.load(os.path.join(config.ckpt_root, f'{step_best}.ckpt'))
del metrics
accelerator.wait_for_everyone()
eval_step(n_samples=config.sample.n_samples, sample_steps=config.sample.sample_steps)
from absl import flags
from absl import app
from ml_collections import config_flags
import sys
from pathlib import Path
FLAGS = flags.FLAGS
config_flags.DEFINE_config_file(
"config", None, "Training configuration.", lock_config=False)
flags.mark_flags_as_required(["config"])
flags.DEFINE_string("workdir", None, "Work unit directory.")
def get_config_name():
argv = sys.argv
for i in range(1, len(argv)):
if argv[i].startswith('--config='):
return Path(argv[i].split('=')[-1]).stem
def get_hparams():
argv = sys.argv
lst = []
for i in range(1, len(argv)):
assert '=' in argv[i]
if argv[i].startswith('--config.') and not argv[i].startswith('--config.dataset.path'):
hparam, val = argv[i].split('=')
hparam = hparam.split('.')[-1]
if hparam.endswith('path'):
val = Path(val).stem
lst.append(f'{hparam}={val}')
hparams = '-'.join(lst)
if hparams == '':
hparams = 'default'
return hparams
def main(argv):
config = FLAGS.config
config.config_name = get_config_name()
config.hparams = get_hparams()
config.workdir = FLAGS.workdir or os.path.join('workdir', config.config_name, config.hparams)
config.ckpt_root = os.path.join(config.workdir, 'ckpts')
config.sample_dir = os.path.join(config.workdir, 'samples')
train(config)
if __name__ == "__main__":
app.run(main)