File size: 14,219 Bytes
f9567e5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
import ml_collections
import torch
from torch import multiprocessing as mp
from datasets import get_dataset
from torchvision.utils import make_grid, save_image
import utils
import einops
from torch.utils._pytree import tree_map
import accelerate
from torch.utils.data import DataLoader
from tqdm.auto import tqdm
import tempfile
from absl import logging
import builtins
import os
import wandb
import numpy as np
import time
import random

import libs.autoencoder
from libs.t5 import T5Embedder
from libs.clip import FrozenCLIPEmbedder
from diffusion.flow_matching import FlowMatching, ODEFlowMatchingSolver, ODEEulerFlowMatchingSolver
from tools.fid_score import calculate_fid_given_paths
from tools.clip_score import ClipSocre


def train(config):
    if config.get('benchmark', False):
        torch.backends.cudnn.benchmark = True
        torch.backends.cudnn.deterministic = False

    mp.set_start_method('spawn')
    accelerator = accelerate.Accelerator()
    device = accelerator.device
    accelerate.utils.set_seed(config.seed, device_specific=True)
    logging.info(f'Process {accelerator.process_index} using device: {device}')

    config.mixed_precision = accelerator.mixed_precision
    config = ml_collections.FrozenConfigDict(config)

    assert config.train.batch_size % accelerator.num_processes == 0
    mini_batch_size = config.train.batch_size // accelerator.num_processes

    if accelerator.is_main_process:
        os.makedirs(config.ckpt_root, exist_ok=True)
        os.makedirs(config.sample_dir, exist_ok=True)
    accelerator.wait_for_everyone()
    if accelerator.is_main_process:
        wandb.init(dir=os.path.abspath(config.workdir), project=f'uvit_{config.dataset.name}', config=config.to_dict(),
                   name=config.hparams, job_type='train', mode='offline')
        utils.set_logger(log_level='info', fname=os.path.join(config.workdir, 'output.log'))
        logging.info(config)
    else:
        utils.set_logger(log_level='error')
        builtins.print = lambda *args: None
    logging.info(f'Run on {accelerator.num_processes} devices')

    dataset = get_dataset(**config.dataset)
    assert os.path.exists(dataset.fid_stat)

    gpu_model = torch.cuda.get_device_name(torch.cuda.current_device())
    num_workers = 8

    train_dataset = dataset.get_split(split='train', labeled=True)
    train_dataset_loader = DataLoader(train_dataset, batch_size=mini_batch_size, shuffle=True, drop_last=True,
                                    num_workers=num_workers, pin_memory=True, persistent_workers=True)

    test_dataset = dataset.get_split(split='test', labeled=True)  # for sampling
    test_dataset_loader = DataLoader(test_dataset, batch_size=config.sample.mini_batch_size, shuffle=True, drop_last=True,
                                     num_workers=num_workers, pin_memory=True, persistent_workers=True)

    train_state = utils.initialize_train_state(config, device)
    nnet, nnet_ema, optimizer, train_dataset_loader, test_dataset_loader = accelerator.prepare(
        train_state.nnet, train_state.nnet_ema, train_state.optimizer, train_dataset_loader, test_dataset_loader)
    lr_scheduler = train_state.lr_scheduler
    train_state.resume(config.ckpt_root)

    autoencoder = libs.autoencoder.get_model(**config.autoencoder)
    autoencoder.to(device)

    if config.nnet.model_args.clip_dim == 4096:
        llm = "t5"
        t5 = T5Embedder(device=device)
    elif config.nnet.model_args.clip_dim == 768:
        llm = "clip"
        clip = FrozenCLIPEmbedder()
        clip.eval()
        clip.to(device)
    else:
        raise NotImplementedError

    ss_empty_context = None

    ClipSocre_model = ClipSocre(device=device)

    @ torch.cuda.amp.autocast()
    def encode(_batch):
        return autoencoder.encode(_batch)

    @ torch.cuda.amp.autocast()
    def decode(_batch):
        return autoencoder.decode(_batch)

    def get_data_generator():
        while True:
            for data in tqdm(train_dataset_loader, disable=not accelerator.is_main_process, desc='epoch'):
                yield data

    data_generator = get_data_generator()

    def get_context_generator(autoencoder):
        while True:
            for data in test_dataset_loader:
                if len(data) == 5:
                    _img, _context, _token_mask, _token, _caption = data
                else:
                    _img, _context = data
                    _token_mask = None
                    _token = None
                    _caption = None
                
                if len(_img.shape)==5:
                    _testbatch_img_blurred = autoencoder.sample(_img[:,1,:]) 
                    yield _context, _token_mask, _token, _caption, _testbatch_img_blurred
                else:
                    assert len(_img.shape)==4
                    yield _context, _token_mask, _token, _caption, None

    context_generator = get_context_generator(autoencoder)

    _flow_mathcing_model = FlowMatching()

    def train_step(_batch, _ss_empty_context):
        _metrics = dict()
        optimizer.zero_grad()

        assert len(_batch)==6
        assert not config.dataset.cfg
        _batch_img = _batch[0]
        _batch_con = _batch[1]
        _batch_mask = _batch[2]
        _batch_token = _batch[3]
        _batch_caption = _batch[4]
        _batch_img_ori = _batch[5]

        _z = autoencoder.sample(_batch_img) 
            
        loss, loss_dict = _flow_mathcing_model(_z, nnet, loss_coeffs=config.loss_coeffs, cond=_batch_con, con_mask=_batch_mask, batch_img_clip=_batch_img_ori, \
            nnet_style=config.nnet.name, text_token=_batch_token, model_config=config.nnet.model_args, all_config=config, training_step=train_state.step)

        _metrics['loss'] = accelerator.gather(loss.detach()).mean()
        for key in loss_dict.keys():
            _metrics[key] = accelerator.gather(loss_dict[key].detach()).mean()
        accelerator.backward(loss.mean())
        optimizer.step()
        lr_scheduler.step()
        train_state.ema_update(config.get('ema_rate', 0.9999))
        train_state.step += 1
        return dict(lr=train_state.optimizer.param_groups[0]['lr'], **_metrics)

    def ode_fm_solver_sample(nnet_ema, _n_samples, _sample_steps, context=None, caption=None, testbatch_img_blurred=None, two_stage_generation=-1, token_mask=None, return_clipScore=False, ClipSocre_model=None):
        with torch.no_grad():
            _z_gaussian = torch.randn(_n_samples, *config.z_shape, device=device)
                
            _z_x0, _mu, _log_var = nnet_ema(context, text_encoder = True, shape = _z_gaussian.shape, mask=token_mask)
            _z_init = _z_x0.reshape(_z_gaussian.shape)
            
            assert config.sample.scale > 1
            _cfg = config.sample.scale

            has_null_indicator = hasattr(config.nnet.model_args, "cfg_indicator")

            ode_solver = ODEEulerFlowMatchingSolver(nnet_ema, step_size_type="step_in_dsigma", guidance_scale=_cfg)
            _z, _ = ode_solver.sample(x_T=_z_init, batch_size=_n_samples, sample_steps=_sample_steps, unconditional_guidance_scale=_cfg, has_null_indicator=has_null_indicator)

            image_unprocessed = decode(_z)

            if return_clipScore:
                clip_score = ClipSocre_model.calculate_clip_score(caption, image_unprocessed)
                return image_unprocessed, clip_score
            else:
                return image_unprocessed

    def eval_step(n_samples, sample_steps):
        logging.info(f'eval_step: n_samples={n_samples}, sample_steps={sample_steps}, algorithm=ODE_Euler_Flow_Matching_Solver, '
                     f'mini_batch_size={config.sample.mini_batch_size}')
        
        def sample_fn(_n_samples, return_caption=False, return_clipScore=False, ClipSocre_model=None, config=None):
            _context, _token_mask, _token, _caption, _testbatch_img_blurred = next(context_generator)
            assert _context.size(0) == _n_samples
            assert not return_caption # during training we should not use this 
            if return_caption:
                return ode_fm_solver_sample(nnet_ema, _n_samples, sample_steps, context=_context, token_mask=_token_mask), _caption
            elif return_clipScore:
                return ode_fm_solver_sample(nnet_ema, _n_samples, sample_steps, context=_context, token_mask=_token_mask, return_clipScore=return_clipScore, ClipSocre_model=ClipSocre_model, caption=_caption)
            else:
                return ode_fm_solver_sample(nnet_ema, _n_samples, sample_steps, context=_context, token_mask=_token_mask)

        with tempfile.TemporaryDirectory() as temp_path:
            path = config.sample.path or temp_path
            if accelerator.is_main_process:
                os.makedirs(path, exist_ok=True)
            clip_score_list = utils.sample2dir(accelerator, path, n_samples, config.sample.mini_batch_size, sample_fn, dataset.unpreprocess, return_clipScore=True, ClipSocre_model=ClipSocre_model, config=config)
            _fid = 0
            if accelerator.is_main_process:
                _fid = calculate_fid_given_paths((dataset.fid_stat, path))
                _clip_score_list = torch.cat(clip_score_list)
                logging.info(f'step={train_state.step} fid{n_samples}={_fid} clip_score{len(_clip_score_list)} = {_clip_score_list.mean().item()}')
                with open(os.path.join(config.workdir, 'eval.log'), 'a') as f:
                    print(f'step={train_state.step} fid{n_samples}={_fid} clip_score{len(_clip_score_list)} = {_clip_score_list.mean().item()}', file=f)
                wandb.log({f'fid{n_samples}': _fid}, step=train_state.step)
            _fid = torch.tensor(_fid, device=device)
            _fid = accelerator.reduce(_fid, reduction='sum')

        return _fid.item()

    logging.info(f'Start fitting, step={train_state.step}, mixed_precision={config.mixed_precision}')

    step_fid = []
    while train_state.step < config.train.n_steps:
        nnet.train()
        batch = tree_map(lambda x: x, next(data_generator))
        metrics = train_step(batch, ss_empty_context)

        nnet.eval()
        if accelerator.is_main_process and train_state.step % config.train.log_interval == 0:
            logging.info(utils.dct2str(dict(step=train_state.step, **metrics)))
            logging.info(config.workdir)
            wandb.log(metrics, step=train_state.step)

        ############# save rigid image
        if train_state.step % config.train.eval_interval == 0:
            torch.cuda.empty_cache()
            logging.info('Save a grid of images...')
            if hasattr(dataset, "token_embedding"):
                contexts = torch.tensor(dataset.token_embedding, device=device)[ : config.train.n_samples_eval]
                token_mask = torch.tensor(dataset.token_mask, device=device)[ : config.train.n_samples_eval]
            elif hasattr(dataset, "contexts"):
                contexts = torch.tensor(dataset.contexts, device=device)[ : config.train.n_samples_eval]
                token_mask = None
            else:
                raise NotImplementedError
            samples = ode_fm_solver_sample(nnet_ema, _n_samples=config.train.n_samples_eval, _sample_steps=50, context=contexts, token_mask=token_mask)
            samples = make_grid(dataset.unpreprocess(samples), 5)
            if accelerator.is_main_process:
                save_image(samples, os.path.join(config.sample_dir, f'{train_state.step}.png'))
                wandb.log({'samples': wandb.Image(samples)}, step=train_state.step)
            accelerator.wait_for_everyone()
            torch.cuda.empty_cache()

        ############ save checkpoint and evaluate results
        if train_state.step % config.train.save_interval == 0 or train_state.step == config.train.n_steps:
            torch.cuda.empty_cache()
            logging.info(f'Save and eval checkpoint {train_state.step}...')

            if accelerator.local_process_index == 0:
                train_state.save(os.path.join(config.ckpt_root, f'{train_state.step}.ckpt'))
            accelerator.wait_for_everyone()

            fid = eval_step(n_samples=10000, sample_steps=50)  # calculate fid of the saved checkpoint
            step_fid.append((train_state.step, fid))

            torch.cuda.empty_cache()
        accelerator.wait_for_everyone()

    logging.info(f'Finish fitting, step={train_state.step}')
    logging.info(f'step_fid: {step_fid}')
    step_best = sorted(step_fid, key=lambda x: x[1])[0][0]
    logging.info(f'step_best: {step_best}')
    train_state.load(os.path.join(config.ckpt_root, f'{step_best}.ckpt'))
    del metrics
    accelerator.wait_for_everyone()
    eval_step(n_samples=config.sample.n_samples, sample_steps=config.sample.sample_steps)



from absl import flags
from absl import app
from ml_collections import config_flags
import sys
from pathlib import Path


FLAGS = flags.FLAGS
config_flags.DEFINE_config_file(
    "config", None, "Training configuration.", lock_config=False)
flags.mark_flags_as_required(["config"])
flags.DEFINE_string("workdir", None, "Work unit directory.")


def get_config_name():
    argv = sys.argv
    for i in range(1, len(argv)):
        if argv[i].startswith('--config='):
            return Path(argv[i].split('=')[-1]).stem


def get_hparams():
    argv = sys.argv
    lst = []
    for i in range(1, len(argv)):
        assert '=' in argv[i]
        if argv[i].startswith('--config.') and not argv[i].startswith('--config.dataset.path'):
            hparam, val = argv[i].split('=')
            hparam = hparam.split('.')[-1]
            if hparam.endswith('path'):
                val = Path(val).stem
            lst.append(f'{hparam}={val}')
    hparams = '-'.join(lst)
    if hparams == '':
        hparams = 'default'
    return hparams


def main(argv):
    config = FLAGS.config
    config.config_name = get_config_name()
    config.hparams = get_hparams()
    config.workdir = FLAGS.workdir or os.path.join('workdir', config.config_name, config.hparams)
    config.ckpt_root = os.path.join(config.workdir, 'ckpts')
    config.sample_dir = os.path.join(config.workdir, 'samples')
    train(config)


if __name__ == "__main__":
    app.run(main)