File size: 14,219 Bytes
f9567e5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 |
import ml_collections
import torch
from torch import multiprocessing as mp
from datasets import get_dataset
from torchvision.utils import make_grid, save_image
import utils
import einops
from torch.utils._pytree import tree_map
import accelerate
from torch.utils.data import DataLoader
from tqdm.auto import tqdm
import tempfile
from absl import logging
import builtins
import os
import wandb
import numpy as np
import time
import random
import libs.autoencoder
from libs.t5 import T5Embedder
from libs.clip import FrozenCLIPEmbedder
from diffusion.flow_matching import FlowMatching, ODEFlowMatchingSolver, ODEEulerFlowMatchingSolver
from tools.fid_score import calculate_fid_given_paths
from tools.clip_score import ClipSocre
def train(config):
if config.get('benchmark', False):
torch.backends.cudnn.benchmark = True
torch.backends.cudnn.deterministic = False
mp.set_start_method('spawn')
accelerator = accelerate.Accelerator()
device = accelerator.device
accelerate.utils.set_seed(config.seed, device_specific=True)
logging.info(f'Process {accelerator.process_index} using device: {device}')
config.mixed_precision = accelerator.mixed_precision
config = ml_collections.FrozenConfigDict(config)
assert config.train.batch_size % accelerator.num_processes == 0
mini_batch_size = config.train.batch_size // accelerator.num_processes
if accelerator.is_main_process:
os.makedirs(config.ckpt_root, exist_ok=True)
os.makedirs(config.sample_dir, exist_ok=True)
accelerator.wait_for_everyone()
if accelerator.is_main_process:
wandb.init(dir=os.path.abspath(config.workdir), project=f'uvit_{config.dataset.name}', config=config.to_dict(),
name=config.hparams, job_type='train', mode='offline')
utils.set_logger(log_level='info', fname=os.path.join(config.workdir, 'output.log'))
logging.info(config)
else:
utils.set_logger(log_level='error')
builtins.print = lambda *args: None
logging.info(f'Run on {accelerator.num_processes} devices')
dataset = get_dataset(**config.dataset)
assert os.path.exists(dataset.fid_stat)
gpu_model = torch.cuda.get_device_name(torch.cuda.current_device())
num_workers = 8
train_dataset = dataset.get_split(split='train', labeled=True)
train_dataset_loader = DataLoader(train_dataset, batch_size=mini_batch_size, shuffle=True, drop_last=True,
num_workers=num_workers, pin_memory=True, persistent_workers=True)
test_dataset = dataset.get_split(split='test', labeled=True) # for sampling
test_dataset_loader = DataLoader(test_dataset, batch_size=config.sample.mini_batch_size, shuffle=True, drop_last=True,
num_workers=num_workers, pin_memory=True, persistent_workers=True)
train_state = utils.initialize_train_state(config, device)
nnet, nnet_ema, optimizer, train_dataset_loader, test_dataset_loader = accelerator.prepare(
train_state.nnet, train_state.nnet_ema, train_state.optimizer, train_dataset_loader, test_dataset_loader)
lr_scheduler = train_state.lr_scheduler
train_state.resume(config.ckpt_root)
autoencoder = libs.autoencoder.get_model(**config.autoencoder)
autoencoder.to(device)
if config.nnet.model_args.clip_dim == 4096:
llm = "t5"
t5 = T5Embedder(device=device)
elif config.nnet.model_args.clip_dim == 768:
llm = "clip"
clip = FrozenCLIPEmbedder()
clip.eval()
clip.to(device)
else:
raise NotImplementedError
ss_empty_context = None
ClipSocre_model = ClipSocre(device=device)
@ torch.cuda.amp.autocast()
def encode(_batch):
return autoencoder.encode(_batch)
@ torch.cuda.amp.autocast()
def decode(_batch):
return autoencoder.decode(_batch)
def get_data_generator():
while True:
for data in tqdm(train_dataset_loader, disable=not accelerator.is_main_process, desc='epoch'):
yield data
data_generator = get_data_generator()
def get_context_generator(autoencoder):
while True:
for data in test_dataset_loader:
if len(data) == 5:
_img, _context, _token_mask, _token, _caption = data
else:
_img, _context = data
_token_mask = None
_token = None
_caption = None
if len(_img.shape)==5:
_testbatch_img_blurred = autoencoder.sample(_img[:,1,:])
yield _context, _token_mask, _token, _caption, _testbatch_img_blurred
else:
assert len(_img.shape)==4
yield _context, _token_mask, _token, _caption, None
context_generator = get_context_generator(autoencoder)
_flow_mathcing_model = FlowMatching()
def train_step(_batch, _ss_empty_context):
_metrics = dict()
optimizer.zero_grad()
assert len(_batch)==6
assert not config.dataset.cfg
_batch_img = _batch[0]
_batch_con = _batch[1]
_batch_mask = _batch[2]
_batch_token = _batch[3]
_batch_caption = _batch[4]
_batch_img_ori = _batch[5]
_z = autoencoder.sample(_batch_img)
loss, loss_dict = _flow_mathcing_model(_z, nnet, loss_coeffs=config.loss_coeffs, cond=_batch_con, con_mask=_batch_mask, batch_img_clip=_batch_img_ori, \
nnet_style=config.nnet.name, text_token=_batch_token, model_config=config.nnet.model_args, all_config=config, training_step=train_state.step)
_metrics['loss'] = accelerator.gather(loss.detach()).mean()
for key in loss_dict.keys():
_metrics[key] = accelerator.gather(loss_dict[key].detach()).mean()
accelerator.backward(loss.mean())
optimizer.step()
lr_scheduler.step()
train_state.ema_update(config.get('ema_rate', 0.9999))
train_state.step += 1
return dict(lr=train_state.optimizer.param_groups[0]['lr'], **_metrics)
def ode_fm_solver_sample(nnet_ema, _n_samples, _sample_steps, context=None, caption=None, testbatch_img_blurred=None, two_stage_generation=-1, token_mask=None, return_clipScore=False, ClipSocre_model=None):
with torch.no_grad():
_z_gaussian = torch.randn(_n_samples, *config.z_shape, device=device)
_z_x0, _mu, _log_var = nnet_ema(context, text_encoder = True, shape = _z_gaussian.shape, mask=token_mask)
_z_init = _z_x0.reshape(_z_gaussian.shape)
assert config.sample.scale > 1
_cfg = config.sample.scale
has_null_indicator = hasattr(config.nnet.model_args, "cfg_indicator")
ode_solver = ODEEulerFlowMatchingSolver(nnet_ema, step_size_type="step_in_dsigma", guidance_scale=_cfg)
_z, _ = ode_solver.sample(x_T=_z_init, batch_size=_n_samples, sample_steps=_sample_steps, unconditional_guidance_scale=_cfg, has_null_indicator=has_null_indicator)
image_unprocessed = decode(_z)
if return_clipScore:
clip_score = ClipSocre_model.calculate_clip_score(caption, image_unprocessed)
return image_unprocessed, clip_score
else:
return image_unprocessed
def eval_step(n_samples, sample_steps):
logging.info(f'eval_step: n_samples={n_samples}, sample_steps={sample_steps}, algorithm=ODE_Euler_Flow_Matching_Solver, '
f'mini_batch_size={config.sample.mini_batch_size}')
def sample_fn(_n_samples, return_caption=False, return_clipScore=False, ClipSocre_model=None, config=None):
_context, _token_mask, _token, _caption, _testbatch_img_blurred = next(context_generator)
assert _context.size(0) == _n_samples
assert not return_caption # during training we should not use this
if return_caption:
return ode_fm_solver_sample(nnet_ema, _n_samples, sample_steps, context=_context, token_mask=_token_mask), _caption
elif return_clipScore:
return ode_fm_solver_sample(nnet_ema, _n_samples, sample_steps, context=_context, token_mask=_token_mask, return_clipScore=return_clipScore, ClipSocre_model=ClipSocre_model, caption=_caption)
else:
return ode_fm_solver_sample(nnet_ema, _n_samples, sample_steps, context=_context, token_mask=_token_mask)
with tempfile.TemporaryDirectory() as temp_path:
path = config.sample.path or temp_path
if accelerator.is_main_process:
os.makedirs(path, exist_ok=True)
clip_score_list = utils.sample2dir(accelerator, path, n_samples, config.sample.mini_batch_size, sample_fn, dataset.unpreprocess, return_clipScore=True, ClipSocre_model=ClipSocre_model, config=config)
_fid = 0
if accelerator.is_main_process:
_fid = calculate_fid_given_paths((dataset.fid_stat, path))
_clip_score_list = torch.cat(clip_score_list)
logging.info(f'step={train_state.step} fid{n_samples}={_fid} clip_score{len(_clip_score_list)} = {_clip_score_list.mean().item()}')
with open(os.path.join(config.workdir, 'eval.log'), 'a') as f:
print(f'step={train_state.step} fid{n_samples}={_fid} clip_score{len(_clip_score_list)} = {_clip_score_list.mean().item()}', file=f)
wandb.log({f'fid{n_samples}': _fid}, step=train_state.step)
_fid = torch.tensor(_fid, device=device)
_fid = accelerator.reduce(_fid, reduction='sum')
return _fid.item()
logging.info(f'Start fitting, step={train_state.step}, mixed_precision={config.mixed_precision}')
step_fid = []
while train_state.step < config.train.n_steps:
nnet.train()
batch = tree_map(lambda x: x, next(data_generator))
metrics = train_step(batch, ss_empty_context)
nnet.eval()
if accelerator.is_main_process and train_state.step % config.train.log_interval == 0:
logging.info(utils.dct2str(dict(step=train_state.step, **metrics)))
logging.info(config.workdir)
wandb.log(metrics, step=train_state.step)
############# save rigid image
if train_state.step % config.train.eval_interval == 0:
torch.cuda.empty_cache()
logging.info('Save a grid of images...')
if hasattr(dataset, "token_embedding"):
contexts = torch.tensor(dataset.token_embedding, device=device)[ : config.train.n_samples_eval]
token_mask = torch.tensor(dataset.token_mask, device=device)[ : config.train.n_samples_eval]
elif hasattr(dataset, "contexts"):
contexts = torch.tensor(dataset.contexts, device=device)[ : config.train.n_samples_eval]
token_mask = None
else:
raise NotImplementedError
samples = ode_fm_solver_sample(nnet_ema, _n_samples=config.train.n_samples_eval, _sample_steps=50, context=contexts, token_mask=token_mask)
samples = make_grid(dataset.unpreprocess(samples), 5)
if accelerator.is_main_process:
save_image(samples, os.path.join(config.sample_dir, f'{train_state.step}.png'))
wandb.log({'samples': wandb.Image(samples)}, step=train_state.step)
accelerator.wait_for_everyone()
torch.cuda.empty_cache()
############ save checkpoint and evaluate results
if train_state.step % config.train.save_interval == 0 or train_state.step == config.train.n_steps:
torch.cuda.empty_cache()
logging.info(f'Save and eval checkpoint {train_state.step}...')
if accelerator.local_process_index == 0:
train_state.save(os.path.join(config.ckpt_root, f'{train_state.step}.ckpt'))
accelerator.wait_for_everyone()
fid = eval_step(n_samples=10000, sample_steps=50) # calculate fid of the saved checkpoint
step_fid.append((train_state.step, fid))
torch.cuda.empty_cache()
accelerator.wait_for_everyone()
logging.info(f'Finish fitting, step={train_state.step}')
logging.info(f'step_fid: {step_fid}')
step_best = sorted(step_fid, key=lambda x: x[1])[0][0]
logging.info(f'step_best: {step_best}')
train_state.load(os.path.join(config.ckpt_root, f'{step_best}.ckpt'))
del metrics
accelerator.wait_for_everyone()
eval_step(n_samples=config.sample.n_samples, sample_steps=config.sample.sample_steps)
from absl import flags
from absl import app
from ml_collections import config_flags
import sys
from pathlib import Path
FLAGS = flags.FLAGS
config_flags.DEFINE_config_file(
"config", None, "Training configuration.", lock_config=False)
flags.mark_flags_as_required(["config"])
flags.DEFINE_string("workdir", None, "Work unit directory.")
def get_config_name():
argv = sys.argv
for i in range(1, len(argv)):
if argv[i].startswith('--config='):
return Path(argv[i].split('=')[-1]).stem
def get_hparams():
argv = sys.argv
lst = []
for i in range(1, len(argv)):
assert '=' in argv[i]
if argv[i].startswith('--config.') and not argv[i].startswith('--config.dataset.path'):
hparam, val = argv[i].split('=')
hparam = hparam.split('.')[-1]
if hparam.endswith('path'):
val = Path(val).stem
lst.append(f'{hparam}={val}')
hparams = '-'.join(lst)
if hparams == '':
hparams = 'default'
return hparams
def main(argv):
config = FLAGS.config
config.config_name = get_config_name()
config.hparams = get_hparams()
config.workdir = FLAGS.workdir or os.path.join('workdir', config.config_name, config.hparams)
config.ckpt_root = os.path.join(config.workdir, 'ckpts')
config.sample_dir = os.path.join(config.workdir, 'samples')
train(config)
if __name__ == "__main__":
app.run(main)
|