|
|
|
|
|
|
|
import streamlit as st |
|
import pandas as pd |
|
import requests |
|
import re |
|
import fitz |
|
import io |
|
import matplotlib.pyplot as plt |
|
from PIL import Image |
|
from transformers import AutoProcessor, AutoModelForVision2Seq |
|
from docling_core.types.doc import DoclingDocument |
|
from docling_core.types.doc.document import DocTagsDocument |
|
import torch |
|
|
|
import logging |
|
logging.basicConfig(level=logging.INFO) |
|
|
|
|
|
|
|
|
|
API_URL = "https://api.stack-ai.com/inference/v0/run/2df89a6c-a4af-4576-880e-27058e498f02/67acad8b0603ba4631db38e7" |
|
headers = { |
|
'Authorization': 'Bearer a9e4979e-cdbe-49ea-a193-53562a784805', |
|
'Content-Type': 'application/json' |
|
} |
|
|
|
|
|
|
|
|
|
class SurveyAnalysis: |
|
def __init__(self, api_key=None): |
|
self.api_key = api_key |
|
|
|
def prepare_llm_input(self, survey_response, topics): |
|
|
|
topic_descriptions = "\n".join([f"- **{topic}**: {description}" for topic, description in topics.items()]) |
|
|
|
llm_input = f""" |
|
Your task is to review PDF docling and extract information related to the provided topics. Here are the topic descriptions: |
|
|
|
{topic_descriptions} |
|
|
|
**Instructions:** |
|
- Extract and summarize the PDF focusing only on the provided topics. |
|
- If a topic is not mentioned in the notes, it should not be included in the Topic_Summary. |
|
- Use **exact quotes** from the original text for each point in your Topic_Summary. |
|
- Exclude erroneous content. |
|
- Do not add additional explanations or instructions. |
|
|
|
**Format your response as follows:** |
|
[Topic] |
|
- "Exact quote" |
|
- "Exact quote" |
|
- "Exact quote" |
|
|
|
**Meeting Notes:** |
|
{survey_response} |
|
""" |
|
return llm_input |
|
|
|
def query_api(self, payload): |
|
response = requests.post(API_URL, headers=headers, json=payload) |
|
return response.json() |
|
|
|
def extract_meeting_notes(self, response): |
|
output = response.get('outputs', {}).get('out-0', '') |
|
return output |
|
|
|
def process_dataframe(self, df, topics): |
|
results = [] |
|
for _, row in df.iterrows(): |
|
llm_input = self.prepare_llm_input(row['Document_Text'], topics) |
|
payload = { |
|
"user_id": "<USER or Conversation ID>", |
|
"in-0": llm_input |
|
} |
|
response = self.query_api(payload) |
|
meeting_notes = self.extract_meeting_notes(response) |
|
results.append({ |
|
'Document_Text': row['Document_Text'], |
|
'Topic_Summary': meeting_notes |
|
}) |
|
|
|
result_df = pd.DataFrame(results) |
|
df = df.reset_index(drop=True) |
|
return pd.concat([df, result_df[['Topic_Summary']]], axis=1) |
|
|
|
|
|
|
|
|
|
def extract_excerpts(processed_df): |
|
new_rows = [] |
|
|
|
for _, row in processed_df.iterrows(): |
|
Topic_Summary = row['Topic_Summary'] |
|
|
|
|
|
sections = re.split(r'\n(?=\[)', Topic_Summary) |
|
|
|
for section in sections: |
|
|
|
topic_match = re.match(r'\[([^\]]+)\]', section) |
|
if topic_match: |
|
topic = topic_match.group(1) |
|
|
|
|
|
excerpts = re.findall(r'- "([^"]+)"', section) |
|
|
|
for excerpt in excerpts: |
|
new_rows.append({ |
|
'Document_Text': row['Document_Text'], |
|
'Topic_Summary': row['Topic_Summary'], |
|
'Excerpt': excerpt, |
|
'Topic': topic |
|
}) |
|
|
|
return pd.DataFrame(new_rows) |
|
|
|
|
|
|
|
|
|
|
|
|
|
st.set_page_config( |
|
page_title="Choose Your Own Adventure (Topic Extraction) PDF Analysis App", |
|
page_icon=":bar_chart:", |
|
layout="centered", |
|
initial_sidebar_state="auto", |
|
menu_items={ |
|
'Get Help': 'mailto:[email protected]', |
|
'About': "This app is built to support PDF analysis" |
|
} |
|
) |
|
|
|
|
|
|
|
|
|
|
|
|
|
with st.sidebar: |
|
|
|
image_width = 300 |
|
|
|
|
|
image_path = "mtss.ai_small.png" |
|
|
|
st.image(image_path, width=image_width) |
|
|
|
|
|
|
|
with st.expander("**MTSS.ai**", expanded=True): |
|
st.write(""" |
|
- **Support**: Cheyne LeVesseur PhD |
|
- **Email**: [email protected] |
|
""") |
|
st.divider() |
|
st.subheader('Instructions') |
|
|
|
Instructions = """ |
|
- **Step 1**: Upload your PDF file. |
|
- **Step 2**: Review the processed text. |
|
- **Step 3**: Add your topics and descriptions of interest. |
|
- **Step 4**: Review the extracted excerpts and classifications, and topic distribution and frequency. |
|
- **Step 5**: Review bar charts of topics. |
|
- **Step 6**: Download the processed data as a CSV file. |
|
""" |
|
st.markdown(Instructions) |
|
|
|
|
|
@st.cache_resource |
|
def load_smol_docling(): |
|
device = "cuda" if torch.cuda.is_available() else "cpu" |
|
processor = AutoProcessor.from_pretrained("ds4sd/SmolDocling-256M-preview") |
|
model = AutoModelForVision2Seq.from_pretrained( |
|
"ds4sd/SmolDocling-256M-preview", |
|
torch_dtype=torch.float32 |
|
).to(device) |
|
return model, processor |
|
|
|
model, processor = load_smol_docling() |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def convert_pdf_to_images(pdf_file, dpi=150, max_size=1600): |
|
images = [] |
|
doc = fitz.open(stream=pdf_file.read(), filetype="pdf") |
|
for page_number in range(len(doc)): |
|
page = doc.load_page(page_number) |
|
pix = page.get_pixmap(dpi=dpi) |
|
img_data = pix.tobytes("png") |
|
image = Image.open(io.BytesIO(img_data)).convert("RGB") |
|
|
|
image.thumbnail((max_size, max_size), Image.LANCZOS) |
|
images.append(image) |
|
return images |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def extract_markdown_from_image(image): |
|
start_time = time.time() |
|
prompt_text = "Convert this page to docling." |
|
device = "cuda" if torch.cuda.is_available() else "cpu" |
|
|
|
messages = [{"role": "user", "content": [{"type": "image"}, {"type": "text", "text": prompt_text}]}] |
|
prompt = processor.apply_chat_template(messages, add_generation_prompt=True) |
|
inputs = processor(text=prompt, images=[image], return_tensors="pt").to(device) |
|
|
|
with torch.no_grad(): |
|
generated_ids = model.generate(**inputs, max_new_tokens=1024) |
|
|
|
prompt_length = inputs.input_ids.shape[1] |
|
trimmed_generated_ids = generated_ids[:, prompt_length:] |
|
doctags = processor.batch_decode(trimmed_generated_ids, skip_special_tokens=False)[0].lstrip() |
|
doctags = doctags.replace("<end_of_utterance>", "").strip() |
|
|
|
doctags_doc = DocTagsDocument.from_doctags_and_image_pairs([doctags], [image]) |
|
doc = DoclingDocument(name="ExtractedDocument") |
|
doc.load_from_doctags(doctags_doc) |
|
markdown_text = doc.export_to_markdown() |
|
processing_time = time.time() - start_time |
|
logging.info(f"Inference took {processing_time:.2f} seconds") |
|
return markdown_text |
|
|
|
|
|
st.title("Choose Your Own Adventure (Topic Extraction) PDF Analysis App") |
|
|
|
uploaded_file = st.file_uploader("Upload PDF file", type=["pdf"]) |
|
|
|
if uploaded_file: |
|
with st.spinner("Processing PDF..."): |
|
images = convert_pdf_to_images(uploaded_file) |
|
|
|
markdown_texts = [] |
|
for idx, image in enumerate(images): |
|
markdown_text = extract_markdown_from_image(image) |
|
markdown_texts.append(markdown_text) |
|
|
|
df = pd.DataFrame({'Document_Text': markdown_texts}) |
|
|
|
st.success("PDF processed successfully!") |
|
|
|
|
|
if df.empty or df['Document_Text'].isnull().all(): |
|
st.error("No meaningful text extracted from the PDF.") |
|
st.stop() |
|
|
|
st.markdown("### Extracted Markdown Preview") |
|
st.write(df.head()) |
|
|
|
|
|
|
|
|
|
st.markdown("### Enter Topics and Descriptions") |
|
num_topics = st.number_input("Number of topics", min_value=1, max_value=10, value=1, step=1) |
|
|
|
topics = {} |
|
for i in range(num_topics): |
|
topic = st.text_input(f"Topic {i+1} Name", key=f"topic_{i}") |
|
description = st.text_area(f"Topic {i+1} Description", key=f"description_{i}") |
|
if topic and description: |
|
topics[topic] = description |
|
|
|
|
|
if st.button("Run Analysis"): |
|
if not topics: |
|
st.warning("Please enter at least one topic and description.") |
|
st.stop() |
|
|
|
|
|
|
|
|
|
analyzer = SurveyAnalysis() |
|
processed_df = analyzer.process_dataframe(df, topics) |
|
df_VIP_extracted = extract_excerpts(processed_df) |
|
|
|
required_columns = ['Document_Text', 'Topic_Summary', 'Excerpt', 'Topic'] |
|
missing_columns = [col for col in required_columns if col not in df_VIP_extracted.columns] |
|
|
|
if missing_columns: |
|
st.error(f"Missing columns after processing: {missing_columns}") |
|
st.stop() |
|
|
|
df_VIP_extracted = df_VIP_extracted[required_columns] |
|
|
|
st.markdown("### Processed Meeting Notes") |
|
st.dataframe(df_VIP_extracted) |
|
|
|
st.write(f"**Number of meeting notes analyzed:** {len(df)}") |
|
st.write(f"**Number of excerpts extracted:** {len(df_VIP_extracted)}") |
|
|
|
|
|
csv = df_VIP_extracted.to_csv(index=False) |
|
st.download_button( |
|
"Download data as CSV", |
|
data=csv, |
|
file_name='extracted_meeting_notes.csv', |
|
mime='text/csv' |
|
) |
|
|
|
|
|
topic_counts = df_VIP_extracted['Topic'].value_counts() |
|
frequency_table = pd.DataFrame({'Topic': topic_counts.index, 'Count': topic_counts.values}) |
|
frequency_table['Percentage'] = (frequency_table['Count'] / frequency_table['Count'].sum() * 100).round(0) |
|
|
|
st.markdown("### Topic Distribution") |
|
st.dataframe(frequency_table) |
|
|
|
fig, ax = plt.subplots(figsize=(10, 5)) |
|
ax.bar(frequency_table['Topic'], frequency_table['Count'], color='#3d9aa1') |
|
ax.set_ylabel('Count') |
|
ax.set_title('Frequency of Topics') |
|
st.pyplot(fig) |
|
|
|
else: |
|
st.info("Please upload a PDF file to begin.") |