ProfessorLeVesseur's picture
Update app.py
d03227a verified
raw
history blame
13.8 kB
# ---------------------------------------------------------------------------------------
# Imports and Options
# ---------------------------------------------------------------------------------------
import streamlit as st
import pandas as pd
import requests
import re
import fitz # PyMuPDF
import io
import matplotlib.pyplot as plt
from PIL import Image
from transformers import AutoProcessor, AutoModelForVision2Seq
from docling_core.types.doc import DoclingDocument
from docling_core.types.doc.document import DocTagsDocument
import torch
import logging
logging.basicConfig(level=logging.INFO)
# ---------------------------------------------------------------------------------------
# API Configuration
# ---------------------------------------------------------------------------------------
API_URL = "https://api.stack-ai.com/inference/v0/run/2df89a6c-a4af-4576-880e-27058e498f02/67acad8b0603ba4631db38e7"
headers = {
'Authorization': 'Bearer a9e4979e-cdbe-49ea-a193-53562a784805',
'Content-Type': 'application/json'
}
# ---------------------------------------------------------------------------------------
# Survey Analysis Class
# ---------------------------------------------------------------------------------------
class SurveyAnalysis:
def __init__(self, api_key=None):
self.api_key = api_key
def prepare_llm_input(self, survey_response, topics):
# Create topic description string from user input
topic_descriptions = "\n".join([f"- **{topic}**: {description}" for topic, description in topics.items()])
llm_input = f"""
Your task is to review PDF docling and extract information related to the provided topics. Here are the topic descriptions:
{topic_descriptions}
**Instructions:**
- Extract and summarize the PDF focusing only on the provided topics.
- If a topic is not mentioned in the notes, it should not be included in the Topic_Summary.
- Use **exact quotes** from the original text for each point in your Topic_Summary.
- Exclude erroneous content.
- Do not add additional explanations or instructions.
**Format your response as follows:**
[Topic]
- "Exact quote"
- "Exact quote"
- "Exact quote"
**Meeting Notes:**
{survey_response}
"""
return llm_input
def query_api(self, payload):
response = requests.post(API_URL, headers=headers, json=payload)
return response.json()
def extract_meeting_notes(self, response):
output = response.get('outputs', {}).get('out-0', '')
return output
def process_dataframe(self, df, topics):
results = []
for _, row in df.iterrows():
llm_input = self.prepare_llm_input(row['Document_Text'], topics)
payload = {
"user_id": "<USER or Conversation ID>",
"in-0": llm_input
}
response = self.query_api(payload)
meeting_notes = self.extract_meeting_notes(response)
results.append({
'Document_Text': row['Document_Text'],
'Topic_Summary': meeting_notes
})
result_df = pd.DataFrame(results)
df = df.reset_index(drop=True)
return pd.concat([df, result_df[['Topic_Summary']]], axis=1)
# ---------------------------------------------------------------------------------------
# Function to Extract Excerpts
# ---------------------------------------------------------------------------------------
def extract_excerpts(processed_df):
new_rows = []
for _, row in processed_df.iterrows():
Topic_Summary = row['Topic_Summary']
# Split the Topic_Summary by topic
sections = re.split(r'\n(?=\[)', Topic_Summary)
for section in sections:
# Extract the topic
topic_match = re.match(r'\[([^\]]+)\]', section)
if topic_match:
topic = topic_match.group(1)
# Extract all excerpts within the section
excerpts = re.findall(r'- "([^"]+)"', section)
for excerpt in excerpts:
new_rows.append({
'Document_Text': row['Document_Text'],
'Topic_Summary': row['Topic_Summary'],
'Excerpt': excerpt,
'Topic': topic
})
return pd.DataFrame(new_rows)
#------------------------------------------------------------------------
# Streamlit Configuration
#------------------------------------------------------------------------
# Set page configuration
st.set_page_config(
page_title="Choose Your Own Adventure (Topic Extraction) PDF Analysis App",
page_icon=":bar_chart:",
layout="centered",
initial_sidebar_state="auto",
menu_items={
'Get Help': 'mailto:[email protected]',
'About': "This app is built to support PDF analysis"
}
)
#------------------------------------------------------------------------
# Sidebar
#------------------------------------------------------------------------
# Sidebar with image
with st.sidebar:
# Set the desired width in pixels
image_width = 300
# Define the path to the image
# image_path = "steelcase_small.png"
image_path = "mtss.ai_small.png"
# Display the image
st.image(image_path, width=image_width)
# Additional sidebar content
with st.expander("**MTSS.ai**", expanded=True):
st.write("""
- **Support**: Cheyne LeVesseur PhD
- **Email**: [email protected]
""")
st.divider()
st.subheader('Instructions')
Instructions = """
- **Step 1**: Upload your PDF file.
- **Step 2**: Review the processed text.
- **Step 3**: Add your topics and descriptions of interest.
- **Step 4**: Review the extracted excerpts and classifications, and topic distribution and frequency.
- **Step 5**: Review bar charts of topics.
- **Step 6**: Download the processed data as a CSV file.
"""
st.markdown(Instructions)
# Load SmolDocling model using transformers
@st.cache_resource
def load_smol_docling():
device = "cuda" if torch.cuda.is_available() else "cpu"
processor = AutoProcessor.from_pretrained("ds4sd/SmolDocling-256M-preview")
model = AutoModelForVision2Seq.from_pretrained(
"ds4sd/SmolDocling-256M-preview",
torch_dtype=torch.float32
).to(device)
return model, processor
model, processor = load_smol_docling()
# # Convert PDF to images
# def convert_pdf_to_images(pdf_file):
# images = []
# doc = fitz.open(stream=pdf_file.read(), filetype="pdf")
# for page_number in range(len(doc)):
# page = doc.load_page(page_number)
# pix = page.get_pixmap(dpi=300) # Higher DPI for clarity
# img_data = pix.tobytes("png")
# image = Image.open(io.BytesIO(img_data))
# images.append(image)
# return images
# Improved PDF to image conversion
def convert_pdf_to_images(pdf_file, dpi=150, max_size=1600):
images = []
doc = fitz.open(stream=pdf_file.read(), filetype="pdf")
for page_number in range(len(doc)):
page = doc.load_page(page_number)
pix = page.get_pixmap(dpi=dpi)
img_data = pix.tobytes("png")
image = Image.open(io.BytesIO(img_data)).convert("RGB")
# Resize image to max dimension
image.thumbnail((max_size, max_size), Image.LANCZOS)
images.append(image)
return images
# Extract structured markdown text using SmolDocling (transformers)
# def extract_markdown_from_image(image):
# prompt_text = "Convert this page to docling."
# device = "cuda" if torch.cuda.is_available() else "cpu"
# # Prepare inputs
# messages = [
# {
# "role": "user",
# "content": [
# {"type": "image"},
# {"type": "text", "text": prompt_text}
# ]
# }
# ]
# prompt = processor.apply_chat_template(messages, add_generation_prompt=True)
# inputs = processor(text=prompt, images=[image], return_tensors="pt").to(device)
# # Generate outputs
# generated_ids = model.generate(**inputs, max_new_tokens=1024)
# prompt_length = inputs.input_ids.shape[1]
# trimmed_generated_ids = generated_ids[:, prompt_length:]
# doctags = processor.batch_decode(trimmed_generated_ids, skip_special_tokens=False)[0].lstrip()
# # Clean the output
# doctags = doctags.replace("<end_of_utterance>", "").strip()
# # Populate document
# doctags_doc = DocTagsDocument.from_doctags_and_image_pairs([doctags], [image])
# # Create a docling document
# doc = DoclingDocument(name="ExtractedDocument")
# doc.load_from_doctags(doctags_doc)
# # Export as markdown
# markdown_text = doc.export_to_markdown()
# return markdown_text
def extract_markdown_from_image(image):
start_time = time.time()
prompt_text = "Convert this page to docling."
device = "cuda" if torch.cuda.is_available() else "cpu"
messages = [{"role": "user", "content": [{"type": "image"}, {"type": "text", "text": prompt_text}]}]
prompt = processor.apply_chat_template(messages, add_generation_prompt=True)
inputs = processor(text=prompt, images=[image], return_tensors="pt").to(device)
with torch.no_grad(): # <-- Crucial for speed
generated_ids = model.generate(**inputs, max_new_tokens=1024)
prompt_length = inputs.input_ids.shape[1]
trimmed_generated_ids = generated_ids[:, prompt_length:]
doctags = processor.batch_decode(trimmed_generated_ids, skip_special_tokens=False)[0].lstrip()
doctags = doctags.replace("<end_of_utterance>", "").strip()
doctags_doc = DocTagsDocument.from_doctags_and_image_pairs([doctags], [image])
doc = DoclingDocument(name="ExtractedDocument")
doc.load_from_doctags(doctags_doc)
markdown_text = doc.export_to_markdown()
processing_time = time.time() - start_time
logging.info(f"Inference took {processing_time:.2f} seconds")
return markdown_text
# Streamlit UI
st.title("Choose Your Own Adventure (Topic Extraction) PDF Analysis App")
uploaded_file = st.file_uploader("Upload PDF file", type=["pdf"])
if uploaded_file:
with st.spinner("Processing PDF..."):
images = convert_pdf_to_images(uploaded_file)
markdown_texts = []
for idx, image in enumerate(images):
markdown_text = extract_markdown_from_image(image)
markdown_texts.append(markdown_text)
df = pd.DataFrame({'Document_Text': markdown_texts})
st.success("PDF processed successfully!")
# Check if extraction was successful
if df.empty or df['Document_Text'].isnull().all():
st.error("No meaningful text extracted from the PDF.")
st.stop()
st.markdown("### Extracted Markdown Preview")
st.write(df.head())
# ---------------------------------------------------------------------------------------
# User Input for Topics
# ---------------------------------------------------------------------------------------
st.markdown("### Enter Topics and Descriptions")
num_topics = st.number_input("Number of topics", min_value=1, max_value=10, value=1, step=1)
topics = {}
for i in range(num_topics):
topic = st.text_input(f"Topic {i+1} Name", key=f"topic_{i}")
description = st.text_area(f"Topic {i+1} Description", key=f"description_{i}")
if topic and description:
topics[topic] = description
# Add a button to execute the analysis
if st.button("Run Analysis"):
if not topics:
st.warning("Please enter at least one topic and description.")
st.stop()
# ---------------------------------------------------------------------------------------
# Your existing SurveyAnalysis and extract_excerpts functions remain unchanged here:
# ---------------------------------------------------------------------------------------
analyzer = SurveyAnalysis()
processed_df = analyzer.process_dataframe(df, topics)
df_VIP_extracted = extract_excerpts(processed_df)
required_columns = ['Document_Text', 'Topic_Summary', 'Excerpt', 'Topic']
missing_columns = [col for col in required_columns if col not in df_VIP_extracted.columns]
if missing_columns:
st.error(f"Missing columns after processing: {missing_columns}")
st.stop()
df_VIP_extracted = df_VIP_extracted[required_columns]
st.markdown("### Processed Meeting Notes")
st.dataframe(df_VIP_extracted)
st.write(f"**Number of meeting notes analyzed:** {len(df)}")
st.write(f"**Number of excerpts extracted:** {len(df_VIP_extracted)}")
# CSV download
csv = df_VIP_extracted.to_csv(index=False)
st.download_button(
"Download data as CSV",
data=csv,
file_name='extracted_meeting_notes.csv',
mime='text/csv'
)
# Topic distribution visualization
topic_counts = df_VIP_extracted['Topic'].value_counts()
frequency_table = pd.DataFrame({'Topic': topic_counts.index, 'Count': topic_counts.values})
frequency_table['Percentage'] = (frequency_table['Count'] / frequency_table['Count'].sum() * 100).round(0)
st.markdown("### Topic Distribution")
st.dataframe(frequency_table)
fig, ax = plt.subplots(figsize=(10, 5))
ax.bar(frequency_table['Topic'], frequency_table['Count'], color='#3d9aa1')
ax.set_ylabel('Count')
ax.set_title('Frequency of Topics')
st.pyplot(fig)
else:
st.info("Please upload a PDF file to begin.")