File size: 13,758 Bytes
648dea1
 
 
 
 
 
 
 
 
 
 
56f8447
 
 
 
648dea1
d03227a
 
 
648dea1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f6f8448
648dea1
 
 
 
 
 
 
 
 
 
 
 
 
 
f6f8448
648dea1
 
 
 
 
f6f8448
648dea1
 
f6f8448
648dea1
 
 
 
 
 
c654aff
 
 
648dea1
 
 
 
 
56f8447
648dea1
 
56f8447
 
 
 
 
 
 
648dea1
56f8447
648dea1
d03227a
 
 
 
 
 
 
 
 
 
 
 
 
 
648dea1
 
 
 
d03227a
648dea1
d03227a
 
 
648dea1
 
 
56f8447
d03227a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
648dea1
d03227a
56f8447
 
 
d03227a
56f8447
 
 
d03227a
 
 
56f8447
 
 
 
 
 
648dea1
 
 
d03227a
 
648dea1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
56f8447
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
# ---------------------------------------------------------------------------------------
# Imports and Options
# ---------------------------------------------------------------------------------------
import streamlit as st
import pandas as pd
import requests
import re
import fitz  # PyMuPDF
import io
import matplotlib.pyplot as plt
from PIL import Image
from transformers import AutoProcessor, AutoModelForVision2Seq
from docling_core.types.doc import DoclingDocument
from docling_core.types.doc.document import DocTagsDocument
import torch

import logging
logging.basicConfig(level=logging.INFO)

# ---------------------------------------------------------------------------------------
# API Configuration
# ---------------------------------------------------------------------------------------
API_URL = "https://api.stack-ai.com/inference/v0/run/2df89a6c-a4af-4576-880e-27058e498f02/67acad8b0603ba4631db38e7"
headers = {
    'Authorization': 'Bearer a9e4979e-cdbe-49ea-a193-53562a784805',
    'Content-Type': 'application/json'
}

# ---------------------------------------------------------------------------------------
# Survey Analysis Class
# ---------------------------------------------------------------------------------------
class SurveyAnalysis:
    def __init__(self, api_key=None):
        self.api_key = api_key

    def prepare_llm_input(self, survey_response, topics):
        # Create topic description string from user input
        topic_descriptions = "\n".join([f"- **{topic}**: {description}" for topic, description in topics.items()])
        
        llm_input = f"""
Your task is to review PDF docling and extract information related to the provided topics. Here are the topic descriptions:

{topic_descriptions}

**Instructions:**
- Extract and summarize the PDF focusing only on the provided topics.
- If a topic is not mentioned in the notes, it should not be included in the Topic_Summary.
- Use **exact quotes** from the original text for each point in your Topic_Summary.
- Exclude erroneous content.
- Do not add additional explanations or instructions.

**Format your response as follows:**
[Topic]
- "Exact quote"
- "Exact quote"
- "Exact quote"

**Meeting Notes:**
{survey_response}
"""
        return llm_input

    def query_api(self, payload):
        response = requests.post(API_URL, headers=headers, json=payload)
        return response.json()

    def extract_meeting_notes(self, response):
        output = response.get('outputs', {}).get('out-0', '')
        return output

    def process_dataframe(self, df, topics):
        results = []
        for _, row in df.iterrows():
            llm_input = self.prepare_llm_input(row['Document_Text'], topics)
            payload = {
                "user_id": "<USER or Conversation ID>",  
                "in-0": llm_input
            }
            response = self.query_api(payload)
            meeting_notes = self.extract_meeting_notes(response)
            results.append({
                'Document_Text': row['Document_Text'],
                'Topic_Summary': meeting_notes
            })
        
        result_df = pd.DataFrame(results)
        df = df.reset_index(drop=True)
        return pd.concat([df, result_df[['Topic_Summary']]], axis=1)

# ---------------------------------------------------------------------------------------
# Function to Extract Excerpts
# ---------------------------------------------------------------------------------------
def extract_excerpts(processed_df):
    new_rows = []
    
    for _, row in processed_df.iterrows():
        Topic_Summary = row['Topic_Summary']
        
        # Split the Topic_Summary by topic
        sections = re.split(r'\n(?=\[)', Topic_Summary)
        
        for section in sections:
            # Extract the topic
            topic_match = re.match(r'\[([^\]]+)\]', section)
            if topic_match:
                topic = topic_match.group(1)
                
                # Extract all excerpts within the section
                excerpts = re.findall(r'- "([^"]+)"', section)
                
                for excerpt in excerpts:
                    new_rows.append({
                        'Document_Text': row['Document_Text'],
                        'Topic_Summary': row['Topic_Summary'],
                        'Excerpt': excerpt,
                        'Topic': topic
                    })
    
    return pd.DataFrame(new_rows)

#------------------------------------------------------------------------
# Streamlit Configuration
#------------------------------------------------------------------------

# Set page configuration
st.set_page_config(
    page_title="Choose Your Own Adventure (Topic Extraction) PDF Analysis App", 
    page_icon=":bar_chart:", 
    layout="centered", 
    initial_sidebar_state="auto",
    menu_items={
        'Get Help': 'mailto:[email protected]',
        'About': "This app is built to support PDF analysis"
    }
)

#------------------------------------------------------------------------
# Sidebar
#------------------------------------------------------------------------

# Sidebar with image
with st.sidebar:
    # Set the desired width in pixels
    image_width = 300  
    # Define the path to the image
    # image_path = "steelcase_small.png"
    image_path = "mtss.ai_small.png"
    # Display the image
    st.image(image_path, width=image_width)

    # Additional sidebar content

    with st.expander("**MTSS.ai**", expanded=True):
        st.write("""
        - **Support**: Cheyne LeVesseur PhD  
        - **Email**: [email protected]
        """)
    st.divider()
    st.subheader('Instructions')

    Instructions = """
    - **Step 1**: Upload your PDF file.
    - **Step 2**: Review the processed text.
    - **Step 3**: Add your topics and descriptions of interest.
    - **Step 4**: Review the extracted excerpts and classifications, and topic distribution and frequency.
    - **Step 5**: Review bar charts of topics.
    - **Step 6**: Download the processed data as a CSV file.
    """
    st.markdown(Instructions)

# Load SmolDocling model using transformers
@st.cache_resource
def load_smol_docling():
    device = "cuda" if torch.cuda.is_available() else "cpu"
    processor = AutoProcessor.from_pretrained("ds4sd/SmolDocling-256M-preview")
    model = AutoModelForVision2Seq.from_pretrained(
        "ds4sd/SmolDocling-256M-preview",
        torch_dtype=torch.float32
    ).to(device)
    return model, processor

model, processor = load_smol_docling()

# # Convert PDF to images
# def convert_pdf_to_images(pdf_file):
#     images = []
#     doc = fitz.open(stream=pdf_file.read(), filetype="pdf")
#     for page_number in range(len(doc)):
#         page = doc.load_page(page_number)
#         pix = page.get_pixmap(dpi=300)  # Higher DPI for clarity
#         img_data = pix.tobytes("png")
#         image = Image.open(io.BytesIO(img_data))
#         images.append(image)
#     return images

# Improved PDF to image conversion
def convert_pdf_to_images(pdf_file, dpi=150, max_size=1600):
    images = []
    doc = fitz.open(stream=pdf_file.read(), filetype="pdf")
    for page_number in range(len(doc)):
        page = doc.load_page(page_number)
        pix = page.get_pixmap(dpi=dpi)
        img_data = pix.tobytes("png")
        image = Image.open(io.BytesIO(img_data)).convert("RGB")
        # Resize image to max dimension
        image.thumbnail((max_size, max_size), Image.LANCZOS)
        images.append(image)
    return images

# Extract structured markdown text using SmolDocling (transformers)
# def extract_markdown_from_image(image):
#     prompt_text = "Convert this page to docling."
#     device = "cuda" if torch.cuda.is_available() else "cpu"

#     # Prepare inputs
#     messages = [
#         {
#             "role": "user",
#             "content": [
#                 {"type": "image"},
#                 {"type": "text", "text": prompt_text}
#             ]
#         }
#     ]
#     prompt = processor.apply_chat_template(messages, add_generation_prompt=True)
#     inputs = processor(text=prompt, images=[image], return_tensors="pt").to(device)
    
#     # Generate outputs
#     generated_ids = model.generate(**inputs, max_new_tokens=1024)
#     prompt_length = inputs.input_ids.shape[1]
#     trimmed_generated_ids = generated_ids[:, prompt_length:]
#     doctags = processor.batch_decode(trimmed_generated_ids, skip_special_tokens=False)[0].lstrip()

#     # Clean the output
#     doctags = doctags.replace("<end_of_utterance>", "").strip()

#     # Populate document
#     doctags_doc = DocTagsDocument.from_doctags_and_image_pairs([doctags], [image])

#     # Create a docling document
#     doc = DoclingDocument(name="ExtractedDocument")
#     doc.load_from_doctags(doctags_doc)

#     # Export as markdown
#     markdown_text = doc.export_to_markdown()
#     return markdown_text

def extract_markdown_from_image(image):
    start_time = time.time()
    prompt_text = "Convert this page to docling."
    device = "cuda" if torch.cuda.is_available() else "cpu"

    messages = [{"role": "user", "content": [{"type": "image"}, {"type": "text", "text": prompt_text}]}]
    prompt = processor.apply_chat_template(messages, add_generation_prompt=True)
    inputs = processor(text=prompt, images=[image], return_tensors="pt").to(device)

    with torch.no_grad():  # <-- Crucial for speed
        generated_ids = model.generate(**inputs, max_new_tokens=1024)

    prompt_length = inputs.input_ids.shape[1]
    trimmed_generated_ids = generated_ids[:, prompt_length:]
    doctags = processor.batch_decode(trimmed_generated_ids, skip_special_tokens=False)[0].lstrip()
    doctags = doctags.replace("<end_of_utterance>", "").strip()

    doctags_doc = DocTagsDocument.from_doctags_and_image_pairs([doctags], [image])
    doc = DoclingDocument(name="ExtractedDocument")
    doc.load_from_doctags(doctags_doc)
    markdown_text = doc.export_to_markdown()
    processing_time = time.time() - start_time
    logging.info(f"Inference took {processing_time:.2f} seconds")
    return markdown_text

# Streamlit UI
st.title("Choose Your Own Adventure (Topic Extraction) PDF Analysis App")

uploaded_file = st.file_uploader("Upload PDF file", type=["pdf"])

if uploaded_file:
    with st.spinner("Processing PDF..."):
        images = convert_pdf_to_images(uploaded_file)

        markdown_texts = []
        for idx, image in enumerate(images):
            markdown_text = extract_markdown_from_image(image)
            markdown_texts.append(markdown_text)

        df = pd.DataFrame({'Document_Text': markdown_texts})

    st.success("PDF processed successfully!")

    # Check if extraction was successful
    if df.empty or df['Document_Text'].isnull().all():
        st.error("No meaningful text extracted from the PDF.")
        st.stop()

    st.markdown("### Extracted Markdown Preview")
    st.write(df.head())

    # ---------------------------------------------------------------------------------------
    # User Input for Topics
    # ---------------------------------------------------------------------------------------
    st.markdown("### Enter Topics and Descriptions")
    num_topics = st.number_input("Number of topics", min_value=1, max_value=10, value=1, step=1)

    topics = {}
    for i in range(num_topics):
        topic = st.text_input(f"Topic {i+1} Name", key=f"topic_{i}")
        description = st.text_area(f"Topic {i+1} Description", key=f"description_{i}")
        if topic and description:
            topics[topic] = description

    # Add a button to execute the analysis
    if st.button("Run Analysis"):
        if not topics:
            st.warning("Please enter at least one topic and description.")
            st.stop()

        # ---------------------------------------------------------------------------------------
        # Your existing SurveyAnalysis and extract_excerpts functions remain unchanged here:
        # ---------------------------------------------------------------------------------------
        analyzer = SurveyAnalysis()
        processed_df = analyzer.process_dataframe(df, topics)
        df_VIP_extracted = extract_excerpts(processed_df)

        required_columns = ['Document_Text', 'Topic_Summary', 'Excerpt', 'Topic']
        missing_columns = [col for col in required_columns if col not in df_VIP_extracted.columns]

        if missing_columns:
            st.error(f"Missing columns after processing: {missing_columns}")
            st.stop()

        df_VIP_extracted = df_VIP_extracted[required_columns]

        st.markdown("### Processed Meeting Notes")
        st.dataframe(df_VIP_extracted)

        st.write(f"**Number of meeting notes analyzed:** {len(df)}")
        st.write(f"**Number of excerpts extracted:** {len(df_VIP_extracted)}")

        # CSV download
        csv = df_VIP_extracted.to_csv(index=False)
        st.download_button(
            "Download data as CSV",
            data=csv,
            file_name='extracted_meeting_notes.csv',
            mime='text/csv'
        )

        # Topic distribution visualization
        topic_counts = df_VIP_extracted['Topic'].value_counts()
        frequency_table = pd.DataFrame({'Topic': topic_counts.index, 'Count': topic_counts.values})
        frequency_table['Percentage'] = (frequency_table['Count'] / frequency_table['Count'].sum() * 100).round(0)

        st.markdown("### Topic Distribution")
        st.dataframe(frequency_table)

        fig, ax = plt.subplots(figsize=(10, 5))
        ax.bar(frequency_table['Topic'], frequency_table['Count'], color='#3d9aa1')
        ax.set_ylabel('Count')
        ax.set_title('Frequency of Topics')
        st.pyplot(fig)

else:
    st.info("Please upload a PDF file to begin.")