# # --------------------------------------------------------------------------------------- | |
# # Imports and Options | |
# # --------------------------------------------------------------------------------------- | |
# import streamlit as st | |
# import pandas as pd | |
# import requests | |
# import re | |
# import fitz # PyMuPDF | |
# import io | |
# import matplotlib.pyplot as plt | |
# from PIL import Image | |
# from mlx_vlm import load, generate | |
# from mlx_vlm.prompt_utils import apply_chat_template | |
# from mlx_vlm.utils import load_config, stream_generate | |
# from docling_core.types.doc.document import DocTagsDocument, DoclingDocument | |
# # Set Streamlit to wide mode | |
# # st.set_page_config(layout="wide") | |
# # --------------------------------------------------------------------------------------- | |
# # API Configuration | |
# # --------------------------------------------------------------------------------------- | |
# API_URL = "https://api.stack-ai.com/inference/v0/run/2df89a6c-a4af-4576-880e-27058e498f02/67acad8b0603ba4631db38e7" | |
# headers = { | |
# 'Authorization': 'Bearer a9e4979e-cdbe-49ea-a193-53562a784805', | |
# 'Content-Type': 'application/json' | |
# } | |
# # --------------------------------------------------------------------------------------- | |
# # Survey Analysis Class | |
# # --------------------------------------------------------------------------------------- | |
# class SurveyAnalysis: | |
# def __init__(self, api_key=None): | |
# self.api_key = api_key | |
# def prepare_llm_input(self, survey_response, topics): | |
# # Create topic description string from user input | |
# topic_descriptions = "\n".join([f"- **{topic}**: {description}" for topic, description in topics.items()]) | |
# llm_input = f""" | |
# Your task is to review PDF docling and extract information related to the provided topics. Here are the topic descriptions: | |
# {topic_descriptions} | |
# **Instructions:** | |
# - Extract and summarize the PDF focusing only on the provided topics. | |
# - If a topic is not mentioned in the notes, it should not be included in the Topic_Summary. | |
# - Use **exact quotes** from the original text for each point in your Topic_Summary. | |
# - Exclude erroneous content. | |
# - Do not add additional explanations or instructions. | |
# **Format your response as follows:** | |
# [Topic] | |
# - "Exact quote" | |
# - "Exact quote" | |
# - "Exact quote" | |
# **Meeting Notes:** | |
# {survey_response} | |
# """ | |
# return llm_input | |
# def query_api(self, payload): | |
# response = requests.post(API_URL, headers=headers, json=payload) | |
# return response.json() | |
# def extract_meeting_notes(self, response): | |
# output = response.get('outputs', {}).get('out-0', '') | |
# return output | |
# def process_dataframe(self, df, topics): | |
# results = [] | |
# for _, row in df.iterrows(): | |
# llm_input = self.prepare_llm_input(row['Document_Text'], topics) | |
# payload = { | |
# "user_id": "<USER or Conversation ID>", | |
# "in-0": llm_input | |
# } | |
# response = self.query_api(payload) | |
# meeting_notes = self.extract_meeting_notes(response) | |
# results.append({ | |
# 'Document_Text': row['Document_Text'], | |
# 'Topic_Summary': meeting_notes | |
# }) | |
# result_df = pd.DataFrame(results) | |
# df = df.reset_index(drop=True) | |
# return pd.concat([df, result_df[['Topic_Summary']]], axis=1) | |
# # --------------------------------------------------------------------------------------- | |
# # Function to Extract Excerpts | |
# # --------------------------------------------------------------------------------------- | |
# def extract_excerpts(processed_df): | |
# new_rows = [] | |
# for _, row in processed_df.iterrows(): | |
# Topic_Summary = row['Topic_Summary'] | |
# # Split the Topic_Summary by topic | |
# sections = re.split(r'\n(?=\[)', Topic_Summary) | |
# for section in sections: | |
# # Extract the topic | |
# topic_match = re.match(r'\[([^\]]+)\]', section) | |
# if topic_match: | |
# topic = topic_match.group(1) | |
# # Extract all excerpts within the section | |
# excerpts = re.findall(r'- "([^"]+)"', section) | |
# for excerpt in excerpts: | |
# new_rows.append({ | |
# 'Document_Text': row['Document_Text'], | |
# 'Topic_Summary': row['Topic_Summary'], | |
# 'Excerpt': excerpt, | |
# 'Topic': topic | |
# }) | |
# return pd.DataFrame(new_rows) | |
# #------------------------------------------------------------------------ | |
# # Streamlit Configuration | |
# #------------------------------------------------------------------------ | |
# # Set page configuration | |
# st.set_page_config( | |
# page_title="Choose Your Own Adventure (Topic Extraction) PDF Analysis App", | |
# page_icon=":bar_chart:", | |
# layout="centered", | |
# initial_sidebar_state="auto", | |
# menu_items={ | |
# 'Get Help': 'mailto:[email protected]', | |
# 'About': "This app is built to support PDF analysis" | |
# } | |
# ) | |
# #------------------------------------------------------------------------ | |
# # Sidebar | |
# #------------------------------------------------------------------------ | |
# # Sidebar with image | |
# with st.sidebar: | |
# # Set the desired width in pixels | |
# image_width = 300 | |
# # Define the path to the image | |
# # image_path = "steelcase_small.png" | |
# image_path = "mtss.ai_small.png" | |
# # Display the image | |
# st.image(image_path, width=image_width) | |
# # Additional sidebar content | |
# with st.expander("**MTSS.ai**", expanded=True): | |
# st.write(""" | |
# - **Support**: Cheyne LeVesseur PhD | |
# - **Email**: [email protected] | |
# """) | |
# st.divider() | |
# st.subheader('Instructions') | |
# Instructions = """ | |
# - **Step 1**: Upload your PDF file. | |
# - **Step 2**: Review the processed text. | |
# - **Step 3**: Add your topics and descriptions of interest. | |
# - **Step 4**: Review the extracted excerpts and classifications, and topic distribution and frequency. | |
# - **Step 5**: Review bar charts of topics. | |
# - **Step 6**: Download the processed data as a CSV file. | |
# """ | |
# st.markdown(Instructions) | |
# # Load SmolDocling model () | |
# @st.cache_resource | |
# def load_smol_docling(): | |
# model_path = "ds4sd/SmolDocling-256M-preview" | |
# model, processor = load(model_path) | |
# config = load_config(model_path) | |
# return model, processor, config | |
# model, processor, config = load_smol_docling() | |
# # Convert PDF to images | |
# def convert_pdf_to_images(pdf_file): | |
# images = [] | |
# doc = fitz.open(stream=pdf_file.read(), filetype="pdf") | |
# for page_number in range(len(doc)): | |
# page = doc.load_page(page_number) | |
# pix = page.get_pixmap(dpi=300) # Higher DPI for clarity | |
# img_data = pix.tobytes("png") | |
# image = Image.open(io.BytesIO(img_data)) | |
# images.append(image) | |
# return images | |
# # Extract structured markdown text using SmolDocling (mlx_vlm) | |
# def extract_markdown_from_image(image): | |
# prompt = "Convert this page to docling." | |
# formatted_prompt = apply_chat_template(processor, config, prompt, num_images=1) | |
# output = "" | |
# for token in stream_generate( | |
# model, processor, formatted_prompt, [image], max_tokens=4096, verbose=False): | |
# output += token.text | |
# if "</doctag>" in token.text: | |
# break | |
# # Convert DocTags to Markdown | |
# doctags_doc = DocTagsDocument.from_doctags_and_image_pairs([output], [image]) | |
# doc = DoclingDocument(name="ExtractedDocument") | |
# doc.load_from_doctags(doctags_doc) | |
# markdown_text = doc.export_to_markdown() | |
# return markdown_text | |
# # Streamlit UI | |
# st.title("Choose Your Own Adventure (Topic Extraction) PDF Analysis App") | |
# uploaded_file = st.file_uploader("Upload PDF file", type=["pdf"]) | |
# if uploaded_file: | |
# with st.spinner("Processing PDF..."): | |
# images = convert_pdf_to_images(uploaded_file) | |
# markdown_texts = [] | |
# for idx, image in enumerate(images): | |
# markdown_text = extract_markdown_from_image(image) | |
# markdown_texts.append(markdown_text) | |
# df = pd.DataFrame({'Document_Text': markdown_texts}) | |
# st.success("PDF processed successfully!") | |
# # Check if extraction was successful | |
# if df.empty or df['Document_Text'].isnull().all(): | |
# st.error("No meaningful text extracted from the PDF.") | |
# st.stop() | |
# st.markdown("### Extracted Markdown Preview") | |
# st.write(df.head()) | |
# # --------------------------------------------------------------------------------------- | |
# # User Input for Topics | |
# # --------------------------------------------------------------------------------------- | |
# st.markdown("### Enter Topics and Descriptions") | |
# num_topics = st.number_input("Number of topics", min_value=1, max_value=10, value=1, step=1) | |
# topics = {} | |
# for i in range(num_topics): | |
# topic = st.text_input(f"Topic {i+1} Name", key=f"topic_{i}") | |
# description = st.text_area(f"Topic {i+1} Description", key=f"description_{i}") | |
# if topic and description: | |
# topics[topic] = description | |
# # Add a button to execute the analysis | |
# if st.button("Run Analysis"): | |
# if not topics: | |
# st.warning("Please enter at least one topic and description.") | |
# st.stop() | |
# # --------------------------------------------------------------------------------------- | |
# # Your existing SurveyAnalysis and extract_excerpts functions remain unchanged here: | |
# # --------------------------------------------------------------------------------------- | |
# analyzer = SurveyAnalysis() | |
# processed_df = analyzer.process_dataframe(df, topics) | |
# df_VIP_extracted = extract_excerpts(processed_df) | |
# required_columns = ['Document_Text', 'Topic_Summary', 'Excerpt', 'Topic'] | |
# missing_columns = [col for col in required_columns if col not in df_VIP_extracted.columns] | |
# if missing_columns: | |
# st.error(f"Missing columns after processing: {missing_columns}") | |
# st.stop() | |
# df_VIP_extracted = df_VIP_extracted[required_columns] | |
# st.markdown("### Processed Meeting Notes") | |
# st.dataframe(df_VIP_extracted) | |
# st.write(f"**Number of meeting notes analyzed:** {len(df)}") | |
# st.write(f"**Number of excerpts extracted:** {len(df_VIP_extracted)}") | |
# # CSV download | |
# csv = df_VIP_extracted.to_csv(index=False) | |
# st.download_button( | |
# "Download data as CSV", | |
# data=csv, | |
# file_name='extracted_meeting_notes.csv', | |
# mime='text/csv' | |
# ) | |
# # Topic distribution visualization | |
# topic_counts = df_VIP_extracted['Topic'].value_counts() | |
# frequency_table = pd.DataFrame({'Topic': topic_counts.index, 'Count': topic_counts.values}) | |
# frequency_table['Percentage'] = (frequency_table['Count'] / frequency_table['Count'].sum() * 100).round(0) | |
# st.markdown("### Topic Distribution") | |
# st.dataframe(frequency_table) | |
# fig, ax = plt.subplots(figsize=(10, 5)) | |
# ax.bar(frequency_table['Topic'], frequency_table['Count'], color='#3d9aa1') | |
# ax.set_ylabel('Count') | |
# ax.set_title('Frequency of Topics') | |
# st.pyplot(fig) | |
# else: | |
# st.info("Please upload a PDF file to begin.") | |
# --------------------------------------------------------------------------------------- | |
# Imports and Options | |
# --------------------------------------------------------------------------------------- | |
import streamlit as st | |
import pandas as pd | |
import requests | |
import re | |
import fitz # PyMuPDF | |
import io | |
import matplotlib.pyplot as plt | |
from PIL import Image | |
from transformers import AutoProcessor, AutoModelForVision2Seq | |
from docling_core.types.doc import DoclingDocument | |
from docling_core.types.doc.document import DocTagsDocument | |
import torch | |
# --------------------------------------------------------------------------------------- | |
# API Configuration | |
# --------------------------------------------------------------------------------------- | |
API_URL = "https://api.stack-ai.com/inference/v0/run/2df89a6c-a4af-4576-880e-27058e498f02/67acad8b0603ba4631db38e7" | |
headers = { | |
'Authorization': 'Bearer a9e4979e-cdbe-49ea-a193-53562a784805', | |
'Content-Type': 'application/json' | |
} | |
# --------------------------------------------------------------------------------------- | |
# Survey Analysis Class | |
# --------------------------------------------------------------------------------------- | |
class SurveyAnalysis: | |
def __init__(self, api_key=None): | |
self.api_key = api_key | |
def prepare_llm_input(self, survey_response, topics): | |
# Create topic description string from user input | |
topic_descriptions = "\n".join([f"- **{topic}**: {description}" for topic, description in topics.items()]) | |
llm_input = f""" | |
Your task is to review PDF docling and extract information related to the provided topics. Here are the topic descriptions: | |
{topic_descriptions} | |
**Instructions:** | |
- Extract and summarize the PDF focusing only on the provided topics. | |
- If a topic is not mentioned in the notes, it should not be included in the Topic_Summary. | |
- Use **exact quotes** from the original text for each point in your Topic_Summary. | |
- Exclude erroneous content. | |
- Do not add additional explanations or instructions. | |
**Format your response as follows:** | |
[Topic] | |
- "Exact quote" | |
- "Exact quote" | |
- "Exact quote" | |
**Meeting Notes:** | |
{survey_response} | |
""" | |
return llm_input | |
def query_api(self, payload): | |
response = requests.post(API_URL, headers=headers, json=payload) | |
return response.json() | |
def extract_meeting_notes(self, response): | |
output = response.get('outputs', {}).get('out-0', '') | |
return output | |
def process_dataframe(self, df, topics): | |
results = [] | |
for _, row in df.iterrows(): | |
llm_input = self.prepare_llm_input(row['Document_Text'], topics) | |
payload = { | |
"user_id": "<USER or Conversation ID>", | |
"in-0": llm_input | |
} | |
response = self.query_api(payload) | |
meeting_notes = self.extract_meeting_notes(response) | |
results.append({ | |
'Document_Text': row['Document_Text'], | |
'Topic_Summary': meeting_notes | |
}) | |
result_df = pd.DataFrame(results) | |
df = df.reset_index(drop=True) | |
return pd.concat([df, result_df[['Topic_Summary']]], axis=1) | |
# --------------------------------------------------------------------------------------- | |
# Function to Extract Excerpts | |
# --------------------------------------------------------------------------------------- | |
def extract_excerpts(processed_df): | |
new_rows = [] | |
for _, row in processed_df.iterrows(): | |
Topic_Summary = row['Topic_Summary'] | |
# Split the Topic_Summary by topic | |
sections = re.split(r'\n(?=\[)', Topic_Summary) | |
for section in sections: | |
# Extract the topic | |
topic_match = re.match(r'\[([^\]]+)\]', section) | |
if topic_match: | |
topic = topic_match.group(1) | |
# Extract all excerpts within the section | |
excerpts = re.findall(r'- "([^"]+)"', section) | |
for excerpt in excerpts: | |
new_rows.append({ | |
'Document_Text': row['Document_Text'], | |
'Topic_Summary': row['Topic_Summary'], | |
'Excerpt': excerpt, | |
'Topic': topic | |
}) | |
return pd.DataFrame(new_rows) | |
#------------------------------------------------------------------------ | |
# Streamlit Configuration | |
#------------------------------------------------------------------------ | |
# Set page configuration | |
st.set_page_config( | |
page_title="Choose Your Own Adventure (Topic Extraction) PDF Analysis App", | |
page_icon=":bar_chart:", | |
layout="centered", | |
initial_sidebar_state="auto", | |
menu_items={ | |
'Get Help': 'mailto:[email protected]', | |
'About': "This app is built to support PDF analysis" | |
} | |
) | |
#------------------------------------------------------------------------ | |
# Sidebar | |
#------------------------------------------------------------------------ | |
# Sidebar with image | |
with st.sidebar: | |
# Set the desired width in pixels | |
image_width = 300 | |
# Define the path to the image | |
# image_path = "steelcase_small.png" | |
image_path = "mtss.ai_small.png" | |
# Display the image | |
st.image(image_path, width=image_width) | |
# Additional sidebar content | |
with st.expander("**MTSS.ai**", expanded=True): | |
st.write(""" | |
- **Support**: Cheyne LeVesseur PhD | |
- **Email**: [email protected] | |
""") | |
st.divider() | |
st.subheader('Instructions') | |
Instructions = """ | |
- **Step 1**: Upload your PDF file. | |
- **Step 2**: Review the processed text. | |
- **Step 3**: Add your topics and descriptions of interest. | |
- **Step 4**: Review the extracted excerpts and classifications, and topic distribution and frequency. | |
- **Step 5**: Review bar charts of topics. | |
- **Step 6**: Download the processed data as a CSV file. | |
""" | |
st.markdown(Instructions) | |
# Load SmolDocling model using transformers | |
def load_smol_docling(): | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
processor = AutoProcessor.from_pretrained("ds4sd/SmolDocling-256M-preview") | |
model = AutoModelForVision2Seq.from_pretrained( | |
"ds4sd/SmolDocling-256M-preview", | |
torch_dtype=torch.float32 | |
).to(device) | |
return model, processor | |
model, processor = load_smol_docling() | |
# Convert PDF to images | |
def convert_pdf_to_images(pdf_file): | |
images = [] | |
doc = fitz.open(stream=pdf_file.read(), filetype="pdf") | |
for page_number in range(len(doc)): | |
page = doc.load_page(page_number) | |
pix = page.get_pixmap(dpi=300) # Higher DPI for clarity | |
img_data = pix.tobytes("png") | |
image = Image.open(io.BytesIO(img_data)) | |
images.append(image) | |
return images | |
# Extract structured markdown text using SmolDocling (transformers) | |
def extract_markdown_from_image(image): | |
prompt_text = "Convert this page to docling." | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
# Prepare inputs | |
messages = [ | |
{ | |
"role": "user", | |
"content": [ | |
{"type": "image"}, | |
{"type": "text", "text": prompt_text} | |
] | |
} | |
] | |
prompt = processor.apply_chat_template(messages, add_generation_prompt=True) | |
inputs = processor(text=prompt, images=[image], return_tensors="pt").to(device) | |
# Generate outputs | |
generated_ids = model.generate(**inputs, max_new_tokens=1024) | |
prompt_length = inputs.input_ids.shape[1] | |
trimmed_generated_ids = generated_ids[:, prompt_length:] | |
doctags = processor.batch_decode(trimmed_generated_ids, skip_special_tokens=False)[0].lstrip() | |
# Clean the output | |
doctags = doctags.replace("<end_of_utterance>", "").strip() | |
# Populate document | |
doctags_doc = DocTagsDocument.from_doctags_and_image_pairs([doctags], [image]) | |
# Create a docling document | |
doc = DoclingDocument(name="ExtractedDocument") | |
doc.load_from_doctags(doctags_doc) | |
# Export as markdown | |
markdown_text = doc.export_to_markdown() | |
return markdown_text | |
# Streamlit UI | |
st.title("Choose Your Own Adventure (Topic Extraction) PDF Analysis App") | |
uploaded_file = st.file_uploader("Upload PDF file", type=["pdf"]) | |
if uploaded_file: | |
with st.spinner("Processing PDF..."): | |
images = convert_pdf_to_images(uploaded_file) | |
markdown_texts = [] | |
for idx, image in enumerate(images): | |
markdown_text = extract_markdown_from_image(image) | |
markdown_texts.append(markdown_text) | |
df = pd.DataFrame({'Document_Text': markdown_texts}) | |
st.success("PDF processed successfully!") | |
# Check if extraction was successful | |
if df.empty or df['Document_Text'].isnull().all(): | |
st.error("No meaningful text extracted from the PDF.") | |
st.stop() | |
st.markdown("### Extracted Markdown Preview") | |
st.write(df.head()) | |
# --------------------------------------------------------------------------------------- | |
# User Input for Topics | |
# --------------------------------------------------------------------------------------- | |
st.markdown("### Enter Topics and Descriptions") | |
num_topics = st.number_input("Number of topics", min_value=1, max_value=10, value=1, step=1) | |
topics = {} | |
for i in range(num_topics): | |
topic = st.text_input(f"Topic {i+1} Name", key=f"topic_{i}") | |
description = st.text_area(f"Topic {i+1} Description", key=f"description_{i}") | |
if topic and description: | |
topics[topic] = description | |
# Add a button to execute the analysis | |
if st.button("Run Analysis"): | |
if not topics: | |
st.warning("Please enter at least one topic and description.") | |
st.stop() | |
# --------------------------------------------------------------------------------------- | |
# Your existing SurveyAnalysis and extract_excerpts functions remain unchanged here: | |
# --------------------------------------------------------------------------------------- | |
analyzer = SurveyAnalysis() | |
processed_df = analyzer.process_dataframe(df, topics) | |
df_VIP_extracted = extract_excerpts(processed_df) | |
required_columns = ['Document_Text', 'Topic_Summary', 'Excerpt', 'Topic'] | |
missing_columns = [col for col in required_columns if col not in df_VIP_extracted.columns] | |
if missing_columns: | |
st.error(f"Missing columns after processing: {missing_columns}") | |
st.stop() | |
df_VIP_extracted = df_VIP_extracted[required_columns] | |
st.markdown("### Processed Meeting Notes") | |
st.dataframe(df_VIP_extracted) | |
st.write(f"**Number of meeting notes analyzed:** {len(df)}") | |
st.write(f"**Number of excerpts extracted:** {len(df_VIP_extracted)}") | |
# CSV download | |
csv = df_VIP_extracted.to_csv(index=False) | |
st.download_button( | |
"Download data as CSV", | |
data=csv, | |
file_name='extracted_meeting_notes.csv', | |
mime='text/csv' | |
) | |
# Topic distribution visualization | |
topic_counts = df_VIP_extracted['Topic'].value_counts() | |
frequency_table = pd.DataFrame({'Topic': topic_counts.index, 'Count': topic_counts.values}) | |
frequency_table['Percentage'] = (frequency_table['Count'] / frequency_table['Count'].sum() * 100).round(0) | |
st.markdown("### Topic Distribution") | |
st.dataframe(frequency_table) | |
fig, ax = plt.subplots(figsize=(10, 5)) | |
ax.bar(frequency_table['Topic'], frequency_table['Count'], color='#3d9aa1') | |
ax.set_ylabel('Count') | |
ax.set_title('Frequency of Topics') | |
st.pyplot(fig) | |
else: | |
st.info("Please upload a PDF file to begin.") |