File size: 23,598 Bytes
56f8447
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
648dea1
 
 
 
 
 
 
 
 
 
 
56f8447
 
 
 
648dea1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f6f8448
648dea1
 
 
 
 
 
 
 
 
 
 
 
 
 
f6f8448
648dea1
 
 
 
 
f6f8448
648dea1
 
f6f8448
648dea1
 
 
 
 
 
c654aff
 
 
648dea1
 
 
 
 
56f8447
648dea1
 
56f8447
 
 
 
 
 
 
648dea1
56f8447
648dea1
 
 
 
 
 
 
 
 
 
 
 
 
56f8447
648dea1
56f8447
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
648dea1
 
56f8447
 
648dea1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
56f8447
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
# # ---------------------------------------------------------------------------------------
# # Imports and Options
# # ---------------------------------------------------------------------------------------
# import streamlit as st
# import pandas as pd
# import requests
# import re
# import fitz  # PyMuPDF
# import io
# import matplotlib.pyplot as plt
# from PIL import Image
# from mlx_vlm import load, generate
# from mlx_vlm.prompt_utils import apply_chat_template
# from mlx_vlm.utils import load_config, stream_generate
# from docling_core.types.doc.document import DocTagsDocument, DoclingDocument

# # Set Streamlit to wide mode
# # st.set_page_config(layout="wide")

# # ---------------------------------------------------------------------------------------
# # API Configuration
# # ---------------------------------------------------------------------------------------
# API_URL = "https://api.stack-ai.com/inference/v0/run/2df89a6c-a4af-4576-880e-27058e498f02/67acad8b0603ba4631db38e7"
# headers = {
#     'Authorization': 'Bearer a9e4979e-cdbe-49ea-a193-53562a784805',
#     'Content-Type': 'application/json'
# }

# # ---------------------------------------------------------------------------------------
# # Survey Analysis Class
# # ---------------------------------------------------------------------------------------
# class SurveyAnalysis:
#     def __init__(self, api_key=None):
#         self.api_key = api_key

#     def prepare_llm_input(self, survey_response, topics):
#         # Create topic description string from user input
#         topic_descriptions = "\n".join([f"- **{topic}**: {description}" for topic, description in topics.items()])
        
#         llm_input = f"""
# Your task is to review PDF docling and extract information related to the provided topics. Here are the topic descriptions:

# {topic_descriptions}

# **Instructions:**
# - Extract and summarize the PDF focusing only on the provided topics.
# - If a topic is not mentioned in the notes, it should not be included in the Topic_Summary.
# - Use **exact quotes** from the original text for each point in your Topic_Summary.
# - Exclude erroneous content.
# - Do not add additional explanations or instructions.

# **Format your response as follows:**
# [Topic]
# - "Exact quote"
# - "Exact quote"
# - "Exact quote"

# **Meeting Notes:**
# {survey_response}
# """
#         return llm_input

#     def query_api(self, payload):
#         response = requests.post(API_URL, headers=headers, json=payload)
#         return response.json()

#     def extract_meeting_notes(self, response):
#         output = response.get('outputs', {}).get('out-0', '')
#         return output

#     def process_dataframe(self, df, topics):
#         results = []
#         for _, row in df.iterrows():
#             llm_input = self.prepare_llm_input(row['Document_Text'], topics)
#             payload = {
#                 "user_id": "<USER or Conversation ID>",  
#                 "in-0": llm_input
#             }
#             response = self.query_api(payload)
#             meeting_notes = self.extract_meeting_notes(response)
#             results.append({
#                 'Document_Text': row['Document_Text'],
#                 'Topic_Summary': meeting_notes
#             })
        
#         result_df = pd.DataFrame(results)
#         df = df.reset_index(drop=True)
#         return pd.concat([df, result_df[['Topic_Summary']]], axis=1)

# # ---------------------------------------------------------------------------------------
# # Function to Extract Excerpts
# # ---------------------------------------------------------------------------------------
# def extract_excerpts(processed_df):
#     new_rows = []
    
#     for _, row in processed_df.iterrows():
#         Topic_Summary = row['Topic_Summary']
        
#         # Split the Topic_Summary by topic
#         sections = re.split(r'\n(?=\[)', Topic_Summary)
        
#         for section in sections:
#             # Extract the topic
#             topic_match = re.match(r'\[([^\]]+)\]', section)
#             if topic_match:
#                 topic = topic_match.group(1)
                
#                 # Extract all excerpts within the section
#                 excerpts = re.findall(r'- "([^"]+)"', section)
                
#                 for excerpt in excerpts:
#                     new_rows.append({
#                         'Document_Text': row['Document_Text'],
#                         'Topic_Summary': row['Topic_Summary'],
#                         'Excerpt': excerpt,
#                         'Topic': topic
#                     })
    
#     return pd.DataFrame(new_rows)

# #------------------------------------------------------------------------
# # Streamlit Configuration
# #------------------------------------------------------------------------

# # Set page configuration
# st.set_page_config(
#     page_title="Choose Your Own Adventure (Topic Extraction) PDF Analysis App", 
#     page_icon=":bar_chart:", 
#     layout="centered", 
#     initial_sidebar_state="auto",
#     menu_items={
#         'Get Help': 'mailto:[email protected]',
#         'About': "This app is built to support PDF analysis"
#     }
# )

# #------------------------------------------------------------------------
# # Sidebar
# #------------------------------------------------------------------------

# # Sidebar with image
# with st.sidebar:
#     # Set the desired width in pixels
#     image_width = 300  
#     # Define the path to the image
#     # image_path = "steelcase_small.png"
#     image_path = "mtss.ai_small.png"
#     # Display the image
#     st.image(image_path, width=image_width)

#     # Additional sidebar content

#     with st.expander("**MTSS.ai**", expanded=True):
#         st.write("""
#         - **Support**: Cheyne LeVesseur PhD  
#         - **Email**: [email protected]
#         """)
#     st.divider()
#     st.subheader('Instructions')

#     Instructions = """
#     - **Step 1**: Upload your PDF file.
#     - **Step 2**: Review the processed text.
#     - **Step 3**: Add your topics and descriptions of interest.
#     - **Step 4**: Review the extracted excerpts and classifications, and topic distribution and frequency.
#     - **Step 5**: Review bar charts of topics.
#     - **Step 6**: Download the processed data as a CSV file.
#     """
#     st.markdown(Instructions)

# # Load SmolDocling model ()
# @st.cache_resource
# def load_smol_docling():
#     model_path = "ds4sd/SmolDocling-256M-preview"
#     model, processor = load(model_path)
#     config = load_config(model_path)
#     return model, processor, config

# model, processor, config = load_smol_docling()

# # Convert PDF to images
# def convert_pdf_to_images(pdf_file):
#     images = []
#     doc = fitz.open(stream=pdf_file.read(), filetype="pdf")
#     for page_number in range(len(doc)):
#         page = doc.load_page(page_number)
#         pix = page.get_pixmap(dpi=300)  # Higher DPI for clarity
#         img_data = pix.tobytes("png")
#         image = Image.open(io.BytesIO(img_data))
#         images.append(image)
#     return images

# # Extract structured markdown text using SmolDocling (mlx_vlm)
# def extract_markdown_from_image(image):
#     prompt = "Convert this page to docling."
#     formatted_prompt = apply_chat_template(processor, config, prompt, num_images=1)
#     output = ""

#     for token in stream_generate(
#         model, processor, formatted_prompt, [image], max_tokens=4096, verbose=False):
#         output += token.text
#         if "</doctag>" in token.text:
#             break

#     # Convert DocTags to Markdown
#     doctags_doc = DocTagsDocument.from_doctags_and_image_pairs([output], [image])
#     doc = DoclingDocument(name="ExtractedDocument")
#     doc.load_from_doctags(doctags_doc)
#     markdown_text = doc.export_to_markdown()
#     return markdown_text

# # Streamlit UI
# st.title("Choose Your Own Adventure (Topic Extraction) PDF Analysis App")

# uploaded_file = st.file_uploader("Upload PDF file", type=["pdf"])

# if uploaded_file:
#     with st.spinner("Processing PDF..."):
#         images = convert_pdf_to_images(uploaded_file)

#         markdown_texts = []
#         for idx, image in enumerate(images):
#             markdown_text = extract_markdown_from_image(image)
#             markdown_texts.append(markdown_text)

#         df = pd.DataFrame({'Document_Text': markdown_texts})

#     st.success("PDF processed successfully!")

#     # Check if extraction was successful
#     if df.empty or df['Document_Text'].isnull().all():
#         st.error("No meaningful text extracted from the PDF.")
#         st.stop()

#     st.markdown("### Extracted Markdown Preview")
#     st.write(df.head())

#     # ---------------------------------------------------------------------------------------
#     # User Input for Topics
#     # ---------------------------------------------------------------------------------------
#     st.markdown("### Enter Topics and Descriptions")
#     num_topics = st.number_input("Number of topics", min_value=1, max_value=10, value=1, step=1)

#     topics = {}
#     for i in range(num_topics):
#         topic = st.text_input(f"Topic {i+1} Name", key=f"topic_{i}")
#         description = st.text_area(f"Topic {i+1} Description", key=f"description_{i}")
#         if topic and description:
#             topics[topic] = description

#     # Add a button to execute the analysis
#     if st.button("Run Analysis"):
#         if not topics:
#             st.warning("Please enter at least one topic and description.")
#             st.stop()

#         # ---------------------------------------------------------------------------------------
#         # Your existing SurveyAnalysis and extract_excerpts functions remain unchanged here:
#         # ---------------------------------------------------------------------------------------
#         analyzer = SurveyAnalysis()
#         processed_df = analyzer.process_dataframe(df, topics)
#         df_VIP_extracted = extract_excerpts(processed_df)

#         required_columns = ['Document_Text', 'Topic_Summary', 'Excerpt', 'Topic']
#         missing_columns = [col for col in required_columns if col not in df_VIP_extracted.columns]

#         if missing_columns:
#             st.error(f"Missing columns after processing: {missing_columns}")
#             st.stop()

#         df_VIP_extracted = df_VIP_extracted[required_columns]

#         st.markdown("### Processed Meeting Notes")
#         st.dataframe(df_VIP_extracted)

#         st.write(f"**Number of meeting notes analyzed:** {len(df)}")
#         st.write(f"**Number of excerpts extracted:** {len(df_VIP_extracted)}")

#         # CSV download
#         csv = df_VIP_extracted.to_csv(index=False)
#         st.download_button(
#             "Download data as CSV",
#             data=csv,
#             file_name='extracted_meeting_notes.csv',
#             mime='text/csv'
#         )

#         # Topic distribution visualization
#         topic_counts = df_VIP_extracted['Topic'].value_counts()
#         frequency_table = pd.DataFrame({'Topic': topic_counts.index, 'Count': topic_counts.values})
#         frequency_table['Percentage'] = (frequency_table['Count'] / frequency_table['Count'].sum() * 100).round(0)

#         st.markdown("### Topic Distribution")
#         st.dataframe(frequency_table)

#         fig, ax = plt.subplots(figsize=(10, 5))
#         ax.bar(frequency_table['Topic'], frequency_table['Count'], color='#3d9aa1')
#         ax.set_ylabel('Count')
#         ax.set_title('Frequency of Topics')
#         st.pyplot(fig)

# else:
#     st.info("Please upload a PDF file to begin.") 



# ---------------------------------------------------------------------------------------
# Imports and Options
# ---------------------------------------------------------------------------------------
import streamlit as st
import pandas as pd
import requests
import re
import fitz  # PyMuPDF
import io
import matplotlib.pyplot as plt
from PIL import Image
from transformers import AutoProcessor, AutoModelForVision2Seq
from docling_core.types.doc import DoclingDocument
from docling_core.types.doc.document import DocTagsDocument
import torch

# ---------------------------------------------------------------------------------------
# API Configuration
# ---------------------------------------------------------------------------------------
API_URL = "https://api.stack-ai.com/inference/v0/run/2df89a6c-a4af-4576-880e-27058e498f02/67acad8b0603ba4631db38e7"
headers = {
    'Authorization': 'Bearer a9e4979e-cdbe-49ea-a193-53562a784805',
    'Content-Type': 'application/json'
}

# ---------------------------------------------------------------------------------------
# Survey Analysis Class
# ---------------------------------------------------------------------------------------
class SurveyAnalysis:
    def __init__(self, api_key=None):
        self.api_key = api_key

    def prepare_llm_input(self, survey_response, topics):
        # Create topic description string from user input
        topic_descriptions = "\n".join([f"- **{topic}**: {description}" for topic, description in topics.items()])
        
        llm_input = f"""
Your task is to review PDF docling and extract information related to the provided topics. Here are the topic descriptions:

{topic_descriptions}

**Instructions:**
- Extract and summarize the PDF focusing only on the provided topics.
- If a topic is not mentioned in the notes, it should not be included in the Topic_Summary.
- Use **exact quotes** from the original text for each point in your Topic_Summary.
- Exclude erroneous content.
- Do not add additional explanations or instructions.

**Format your response as follows:**
[Topic]
- "Exact quote"
- "Exact quote"
- "Exact quote"

**Meeting Notes:**
{survey_response}
"""
        return llm_input

    def query_api(self, payload):
        response = requests.post(API_URL, headers=headers, json=payload)
        return response.json()

    def extract_meeting_notes(self, response):
        output = response.get('outputs', {}).get('out-0', '')
        return output

    def process_dataframe(self, df, topics):
        results = []
        for _, row in df.iterrows():
            llm_input = self.prepare_llm_input(row['Document_Text'], topics)
            payload = {
                "user_id": "<USER or Conversation ID>",  
                "in-0": llm_input
            }
            response = self.query_api(payload)
            meeting_notes = self.extract_meeting_notes(response)
            results.append({
                'Document_Text': row['Document_Text'],
                'Topic_Summary': meeting_notes
            })
        
        result_df = pd.DataFrame(results)
        df = df.reset_index(drop=True)
        return pd.concat([df, result_df[['Topic_Summary']]], axis=1)

# ---------------------------------------------------------------------------------------
# Function to Extract Excerpts
# ---------------------------------------------------------------------------------------
def extract_excerpts(processed_df):
    new_rows = []
    
    for _, row in processed_df.iterrows():
        Topic_Summary = row['Topic_Summary']
        
        # Split the Topic_Summary by topic
        sections = re.split(r'\n(?=\[)', Topic_Summary)
        
        for section in sections:
            # Extract the topic
            topic_match = re.match(r'\[([^\]]+)\]', section)
            if topic_match:
                topic = topic_match.group(1)
                
                # Extract all excerpts within the section
                excerpts = re.findall(r'- "([^"]+)"', section)
                
                for excerpt in excerpts:
                    new_rows.append({
                        'Document_Text': row['Document_Text'],
                        'Topic_Summary': row['Topic_Summary'],
                        'Excerpt': excerpt,
                        'Topic': topic
                    })
    
    return pd.DataFrame(new_rows)

#------------------------------------------------------------------------
# Streamlit Configuration
#------------------------------------------------------------------------

# Set page configuration
st.set_page_config(
    page_title="Choose Your Own Adventure (Topic Extraction) PDF Analysis App", 
    page_icon=":bar_chart:", 
    layout="centered", 
    initial_sidebar_state="auto",
    menu_items={
        'Get Help': 'mailto:[email protected]',
        'About': "This app is built to support PDF analysis"
    }
)

#------------------------------------------------------------------------
# Sidebar
#------------------------------------------------------------------------

# Sidebar with image
with st.sidebar:
    # Set the desired width in pixels
    image_width = 300  
    # Define the path to the image
    # image_path = "steelcase_small.png"
    image_path = "mtss.ai_small.png"
    # Display the image
    st.image(image_path, width=image_width)

    # Additional sidebar content

    with st.expander("**MTSS.ai**", expanded=True):
        st.write("""
        - **Support**: Cheyne LeVesseur PhD  
        - **Email**: [email protected]
        """)
    st.divider()
    st.subheader('Instructions')

    Instructions = """
    - **Step 1**: Upload your PDF file.
    - **Step 2**: Review the processed text.
    - **Step 3**: Add your topics and descriptions of interest.
    - **Step 4**: Review the extracted excerpts and classifications, and topic distribution and frequency.
    - **Step 5**: Review bar charts of topics.
    - **Step 6**: Download the processed data as a CSV file.
    """
    st.markdown(Instructions)

# Load SmolDocling model using transformers
@st.cache_resource
def load_smol_docling():
    device = "cuda" if torch.cuda.is_available() else "cpu"
    processor = AutoProcessor.from_pretrained("ds4sd/SmolDocling-256M-preview")
    model = AutoModelForVision2Seq.from_pretrained(
        "ds4sd/SmolDocling-256M-preview",
        torch_dtype=torch.float32
    ).to(device)
    return model, processor

model, processor = load_smol_docling()

# Convert PDF to images
def convert_pdf_to_images(pdf_file):
    images = []
    doc = fitz.open(stream=pdf_file.read(), filetype="pdf")
    for page_number in range(len(doc)):
        page = doc.load_page(page_number)
        pix = page.get_pixmap(dpi=300)  # Higher DPI for clarity
        img_data = pix.tobytes("png")
        image = Image.open(io.BytesIO(img_data))
        images.append(image)
    return images

# Extract structured markdown text using SmolDocling (transformers)
def extract_markdown_from_image(image):
    prompt_text = "Convert this page to docling."
    device = "cuda" if torch.cuda.is_available() else "cpu"

    # Prepare inputs
    messages = [
        {
            "role": "user",
            "content": [
                {"type": "image"},
                {"type": "text", "text": prompt_text}
            ]
        }
    ]
    prompt = processor.apply_chat_template(messages, add_generation_prompt=True)
    inputs = processor(text=prompt, images=[image], return_tensors="pt").to(device)

    # Generate outputs
    generated_ids = model.generate(**inputs, max_new_tokens=1024)
    prompt_length = inputs.input_ids.shape[1]
    trimmed_generated_ids = generated_ids[:, prompt_length:]
    doctags = processor.batch_decode(trimmed_generated_ids, skip_special_tokens=False)[0].lstrip()

    # Clean the output
    doctags = doctags.replace("<end_of_utterance>", "").strip()

    # Populate document
    doctags_doc = DocTagsDocument.from_doctags_and_image_pairs([doctags], [image])

    # Create a docling document
    doc = DoclingDocument(name="ExtractedDocument")
    doc.load_from_doctags(doctags_doc)

    # Export as markdown
    markdown_text = doc.export_to_markdown()
    return markdown_text

# Streamlit UI
st.title("Choose Your Own Adventure (Topic Extraction) PDF Analysis App")

uploaded_file = st.file_uploader("Upload PDF file", type=["pdf"])

if uploaded_file:
    with st.spinner("Processing PDF..."):
        images = convert_pdf_to_images(uploaded_file)

        markdown_texts = []
        for idx, image in enumerate(images):
            markdown_text = extract_markdown_from_image(image)
            markdown_texts.append(markdown_text)

        df = pd.DataFrame({'Document_Text': markdown_texts})

    st.success("PDF processed successfully!")

    # Check if extraction was successful
    if df.empty or df['Document_Text'].isnull().all():
        st.error("No meaningful text extracted from the PDF.")
        st.stop()

    st.markdown("### Extracted Markdown Preview")
    st.write(df.head())

    # ---------------------------------------------------------------------------------------
    # User Input for Topics
    # ---------------------------------------------------------------------------------------
    st.markdown("### Enter Topics and Descriptions")
    num_topics = st.number_input("Number of topics", min_value=1, max_value=10, value=1, step=1)

    topics = {}
    for i in range(num_topics):
        topic = st.text_input(f"Topic {i+1} Name", key=f"topic_{i}")
        description = st.text_area(f"Topic {i+1} Description", key=f"description_{i}")
        if topic and description:
            topics[topic] = description

    # Add a button to execute the analysis
    if st.button("Run Analysis"):
        if not topics:
            st.warning("Please enter at least one topic and description.")
            st.stop()

        # ---------------------------------------------------------------------------------------
        # Your existing SurveyAnalysis and extract_excerpts functions remain unchanged here:
        # ---------------------------------------------------------------------------------------
        analyzer = SurveyAnalysis()
        processed_df = analyzer.process_dataframe(df, topics)
        df_VIP_extracted = extract_excerpts(processed_df)

        required_columns = ['Document_Text', 'Topic_Summary', 'Excerpt', 'Topic']
        missing_columns = [col for col in required_columns if col not in df_VIP_extracted.columns]

        if missing_columns:
            st.error(f"Missing columns after processing: {missing_columns}")
            st.stop()

        df_VIP_extracted = df_VIP_extracted[required_columns]

        st.markdown("### Processed Meeting Notes")
        st.dataframe(df_VIP_extracted)

        st.write(f"**Number of meeting notes analyzed:** {len(df)}")
        st.write(f"**Number of excerpts extracted:** {len(df_VIP_extracted)}")

        # CSV download
        csv = df_VIP_extracted.to_csv(index=False)
        st.download_button(
            "Download data as CSV",
            data=csv,
            file_name='extracted_meeting_notes.csv',
            mime='text/csv'
        )

        # Topic distribution visualization
        topic_counts = df_VIP_extracted['Topic'].value_counts()
        frequency_table = pd.DataFrame({'Topic': topic_counts.index, 'Count': topic_counts.values})
        frequency_table['Percentage'] = (frequency_table['Count'] / frequency_table['Count'].sum() * 100).round(0)

        st.markdown("### Topic Distribution")
        st.dataframe(frequency_table)

        fig, ax = plt.subplots(figsize=(10, 5))
        ax.bar(frequency_table['Topic'], frequency_table['Count'], color='#3d9aa1')
        ax.set_ylabel('Count')
        ax.set_title('Frequency of Topics')
        st.pyplot(fig)

else:
    st.info("Please upload a PDF file to begin.")