TECH_TALES / app.py
Prof-Hunt's picture
Update app.py
d10f43f verified
raw
history blame
23.7 kB
import gradio as gr
from diffusers import StableDiffusionPipeline, DPMSolverMultistepScheduler
from transformers import AutoProcessor, AutoModelForVision2Seq, AutoModelForCausalLM, AutoTokenizer
import torch
from PIL import Image, ImageDraw, ImageFont
import numpy as np
import textwrap
import os
import gc
import re
import psutil
from datetime import datetime
import spaces
from kokoro import KPipeline
import soundfile as sf
def clear_memory():
"""Helper function to clear both CUDA and system memory, safe for Spaces environment"""
gc.collect()
# Only perform CUDA operations if we're in a GPU task context
if hasattr(spaces, "current_task") and spaces.current_task and torch.cuda.is_available():
torch.cuda.empty_cache()
torch.cuda.synchronize()
process = psutil.Process(os.getpid())
if hasattr(process, 'memory_info'):
process.memory_info().rss
gc.collect(generation=0)
gc.collect(generation=1)
gc.collect(generation=2)
# Only log GPU stats if we're in a GPU task context
if hasattr(spaces, "current_task") and spaces.current_task and torch.cuda.is_available():
print(f"GPU Memory allocated: {torch.cuda.memory_allocated()/1024**2:.2f} MB")
print(f"GPU Memory cached: {torch.cuda.memory_reserved()/1024**2:.2f} MB")
print(f"CPU RAM used: {process.memory_info().rss/1024**2:.2f} MB")
# Initialize models at startup - only the lightweight ones
print("Loading models...")
# Load SmolVLM for image analysis
processor_vlm = AutoProcessor.from_pretrained("HuggingFaceTB/SmolVLM-500M-Instruct")
model_vlm = AutoModelForVision2Seq.from_pretrained(
"HuggingFaceTB/SmolVLM-500M-Instruct",
torch_dtype=torch.bfloat16
).to("cuda")
# Load SmolLM2 for story and prompt generation
checkpoint = "HuggingFaceTB/SmolLM2-1.7B-Instruct"
tokenizer_lm = AutoTokenizer.from_pretrained(checkpoint)
model_lm = AutoModelForCausalLM.from_pretrained(checkpoint).to("cuda")
# Initialize Kokoro TTS pipeline
pipeline = KPipeline(lang_code='a') # 'a' for American English
def load_sd_model():
"""Load Stable Diffusion model only when needed"""
pipe = StableDiffusionPipeline.from_pretrained(
"runwayml/stable-diffusion-v1-5",
torch_dtype=torch.float16,
)
pipe.scheduler = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config)
pipe.to("cuda")
pipe.enable_attention_slicing()
return pipe
@torch.inference_mode()
@spaces.GPU(duration=30)
def generate_image():
"""Generate a random landscape image."""
clear_memory()
pipe = load_sd_model()
default_prompt = "a beautiful, professional landscape photograph"
default_negative_prompt = "blurry, bad quality, distorted, deformed"
default_steps = 30
default_guidance = 7.5
default_seed = torch.randint(0, 2**32 - 1, (1,)).item()
generator = torch.Generator("cuda").manual_seed(default_seed)
try:
image = pipe(
prompt=default_prompt,
negative_prompt=default_negative_prompt,
num_inference_steps=default_steps,
guidance_scale=default_guidance,
generator=generator,
).images[0]
del pipe
clear_memory()
return image
except Exception as e:
print(f"Error generating image: {e}")
if 'pipe' in locals():
del pipe
clear_memory()
return None
@torch.inference_mode()
@spaces.GPU(duration=30)
def analyze_image(image):
if image is None:
return "Please generate an image first."
clear_memory()
if isinstance(image, np.ndarray):
image = Image.fromarray(image)
messages = [
{
"role": "user",
"content": [
{"type": "image"},
{"type": "text", "text": "Describe this image and Be brief but descriptive."}
]
}
]
try:
prompt = processor_vlm.apply_chat_template(messages, add_generation_prompt=True)
inputs = processor_vlm(
text=prompt,
images=[image],
return_tensors="pt"
).to('cuda')
outputs = model_vlm.generate(
input_ids=inputs.input_ids,
pixel_values=inputs.pixel_values,
attention_mask=inputs.attention_mask,
num_return_sequences=1,
no_repeat_ngram_size=2,
max_new_tokens=500,
min_new_tokens=10
)
description = processor_vlm.decode(outputs[0], skip_special_tokens=True)
description = re.sub(r".*?Assistant:\s*", "", description, flags=re.DOTALL).strip()
# Split into sentences and take only the first three
sentences = re.split(r'(?<=[.!?])\s+', description)
description = ' '.join(sentences[:3])
clear_memory()
return description
except Exception as e:
print(f"Error analyzing image: {e}")
clear_memory()
return "Error analyzing image. Please try again."
@torch.inference_mode()
@spaces.GPU(duration=30)
def generate_story(image_description):
clear_memory()
story_prompt = f"""Write a short children's story (one chapter, about 500 words) based on this scene: {image_description}
Requirements:
1. Main character: An English bulldog named Champ
2. Include these values: confidence, teamwork, caring, and hope
3. Theme: "We are stronger together than as individuals"
4. Keep it simple and engaging for young children
5. End with a simple moral lesson"""
try:
messages = [{"role": "user", "content": story_prompt}]
input_text = tokenizer_lm.apply_chat_template(messages, tokenize=False)
inputs = tokenizer_lm.encode(input_text, return_tensors="pt").to("cuda")
outputs = model_lm.generate(
inputs,
max_new_tokens=750,
temperature=0.7,
top_p=0.9,
do_sample=True,
repetition_penalty=1.2
)
story = tokenizer_lm.decode(outputs[0])
story = clean_story_output(story)
clear_memory()
return story
except Exception as e:
print(f"Error generating story: {e}")
clear_memory()
return "Error generating story. Please try again."
@torch.inference_mode()
@spaces.GPU(duration=30)
def generate_image_prompts(story_text):
clear_memory()
paragraphs = split_into_paragraphs(story_text)
all_prompts = []
prompt_instruction = '''Here is a story paragraph: {paragraph}
Start your response with "Watercolor bulldog" and describe what Champ is doing in this scene. Add where it takes place and one mood detail. Keep it short.'''
try:
for i, paragraph in enumerate(paragraphs, 1):
messages = [{"role": "user", "content": prompt_instruction.format(paragraph=paragraph)}]
input_text = tokenizer_lm.apply_chat_template(messages, tokenize=False)
inputs = tokenizer_lm.encode(input_text, return_tensors="pt").to("cuda")
outputs = model_lm.generate(
inputs,
max_new_tokens=30,
temperature=0.5,
top_p=0.9,
do_sample=True,
repetition_penalty=1.2
)
prompt = process_generated_prompt(tokenizer_lm.decode(outputs[0]), paragraph)
section = f"Paragraph {i}:\n{paragraph}\n\nScenery Prompt {i}:\n{prompt}\n\n{'='*50}"
all_prompts.append(section)
clear_memory()
return '\n'.join(all_prompts)
except Exception as e:
print(f"Error generating prompts: {e}")
clear_memory()
return "Error generating prompts. Please try again."
@torch.inference_mode()
@spaces.GPU(duration=60)
def generate_story_image(prompt, seed=-1):
clear_memory()
pipe = load_sd_model()
try:
pipe.load_lora_weights("Prof-Hunt/lora-bulldog")
generator = torch.Generator("cuda")
if seed != -1:
generator.manual_seed(seed)
else:
generator.manual_seed(torch.randint(0, 2**32 - 1, (1,)).item())
enhanced_prompt = f"{prompt}, watercolor style, children's book illustration, soft colors"
image = pipe(
prompt=enhanced_prompt,
negative_prompt="deformed, ugly, blurry, bad art, poor quality, distorted",
num_inference_steps=50,
guidance_scale=15,
generator=generator
).images[0]
pipe.unload_lora_weights()
del pipe
clear_memory()
return image
except Exception as e:
print(f"Error generating image: {e}")
if 'pipe' in locals():
pipe.unload_lora_weights()
del pipe
clear_memory()
return None
@torch.inference_mode()
@spaces.GPU(duration=180)
def generate_all_scenes(prompts_text):
clear_memory()
generated_images = []
formatted_prompts = []
progress_messages = []
total_scenes = len([s for s in prompts_text.split('='*50) if s.strip()])
def update_progress():
"""Create a progress message showing completed/total scenes"""
completed = len(generated_images)
message = f"Generated {completed}/{total_scenes} scenes\n\n"
if progress_messages:
message += "\n".join(progress_messages[-3:]) # Show last 3 status messages
return message
sections = prompts_text.split('='*50)
for section_num, section in enumerate(sections, 1):
if not section.strip():
continue
scene_prompt = None
for line in section.split('\n'):
if 'Scenery Prompt' in line:
scene_num = line.split('Scenery Prompt')[1].split(':')[0].strip()
next_line_index = section.split('\n').index(line) + 1
if next_line_index < len(section.split('\n')):
scene_prompt = section.split('\n')[next_line_index].strip()
formatted_prompts.append(f"Scene {scene_num}: {scene_prompt}")
break
if scene_prompt:
try:
clear_memory()
status_msg = f"🎨 Creating scene {section_num}: '{scene_prompt[:50]}...'"
progress_messages.append(status_msg)
# Yield progress update
yield generated_images, "\n\n".join(formatted_prompts), update_progress()
image = generate_story_image(scene_prompt)
if image is not None:
# Convert PIL Image to numpy array with explicit mode conversion
pil_image = image if isinstance(image, Image.Image) else Image.fromarray(image)
pil_image = pil_image.convert('RGB') # Ensure RGB mode
img_array = np.array(pil_image)
# Verify array shape and type
if len(img_array.shape) == 3 and img_array.shape[2] == 3:
generated_images.append(img_array)
progress_messages.append(f"✅ Successfully completed scene {section_num}")
else:
progress_messages.append(f"❌ Error: Invalid image format for scene {section_num}")
else:
progress_messages.append(f"❌ Failed to generate scene {section_num}")
clear_memory()
except Exception as e:
error_msg = f"❌ Error generating scene {section_num}: {str(e)}"
progress_messages.append(error_msg)
clear_memory()
continue
# Yield progress update after each scene
yield generated_images, "\n\n".join(formatted_prompts), update_progress()
# Final status update
if not generated_images:
progress_messages.append("❌ No images were successfully generated")
else:
progress_messages.append(f"✅ Successfully completed all {len(generated_images)} scenes!")
# Final yield
yield generated_images, "\n\n".join(formatted_prompts), update_progress()
@spaces.GPU(duration=60)
def add_text_to_scenes(gallery_images, prompts_text):
if not isinstance(gallery_images, list):
return [], []
clear_memory()
sections = prompts_text.split('='*50)
overlaid_images = []
output_files = []
temp_dir = "temp_book_pages"
os.makedirs(temp_dir, exist_ok=True)
for i, (image_data, section) in enumerate(zip(gallery_images, sections)):
if not section.strip():
continue
lines = [line.strip() for line in section.split('\n') if line.strip()]
paragraph = None
for j, line in enumerate(lines):
if line.startswith('Paragraph'):
if j + 1 < len(lines):
paragraph = lines[j + 1]
break
if paragraph and image_data is not None:
try:
# Handle tuple case (image, label) from gallery
if isinstance(image_data, tuple):
image_data = image_data[0]
# Convert numpy array to PIL Image
if isinstance(image_data, np.ndarray):
image = Image.fromarray(image_data)
else:
image = image_data
print(f"Processing image {i+1}, type: {type(image)}")
# Ensure we have a PIL Image
if not isinstance(image, Image.Image):
raise TypeError(f"Expected PIL Image, got {type(image)}")
overlaid_img = overlay_text_on_image(image, paragraph)
if overlaid_img is not None:
overlaid_array = np.array(overlaid_img)
overlaid_images.append(overlaid_array)
output_path = os.path.join(temp_dir, f"panel_{i+1}.png")
overlaid_img.save(output_path)
output_files.append(output_path)
print(f"Successfully processed image {i+1}")
except Exception as e:
print(f"Error processing image {i+1}: {str(e)}")
continue
if not overlaid_images:
print("No images were successfully processed")
else:
print(f"Successfully processed {len(overlaid_images)} images")
clear_memory()
return overlaid_images, output_files
def overlay_text_on_image(image, text):
"""Helper function to overlay text on an image"""
if image is None:
return None
try:
# Ensure we're working with RGB mode
img = image.convert('RGB')
draw = ImageDraw.Draw(img)
# Calculate font size based on image dimensions
font_size = int(img.width * 0.025)
try:
font = ImageFont.truetype("/usr/share/fonts/truetype/dejavu/DejaVuSans-Bold.ttf", font_size)
except:
font = ImageFont.load_default()
# Calculate text positioning
y_position = int(img.height * 0.005)
x_margin = int(img.width * 0.005)
available_width = img.width - (2 * x_margin)
# Wrap text to fit image width
wrapped_text = textwrap.fill(text, width=int(available_width / (font_size * 0.6)))
# Add white outline to text for better readability
outline_color = (255, 255, 255)
text_color = (0, 0, 0)
offsets = [-2, -1, 1, 2]
# Draw text outline
for dx in offsets:
for dy in offsets:
draw.multiline_text(
(x_margin + dx, y_position + dy),
wrapped_text,
font=font,
fill=outline_color
)
# Draw main text
draw.multiline_text(
(x_margin, y_position),
wrapped_text,
font=font,
fill=text_color
)
return img
except Exception as e:
print(f"Error in overlay_text_on_image: {e}")
return None
def generate_combined_audio_from_story(story_text, voice='af_heart', speed=1):
clear_memory()
if not story_text:
return None
paragraphs = split_into_paragraphs(story_text)
combined_audio = []
try:
for paragraph in paragraphs:
if not paragraph.strip():
continue
generator = pipeline(
paragraph,
voice=voice,
speed=speed,
split_pattern=r'\n+'
)
for _, _, audio in generator:
combined_audio.extend(audio)
# Convert combined audio to NumPy array and save
combined_audio = np.array(combined_audio)
filename = "combined_story.wav"
sf.write(filename, combined_audio, 24000) # Save audio as .wav
clear_memory()
return filename
except Exception as e:
print(f"Error generating audio: {e}")
clear_memory()
return None
# Helper functions
def clean_story_output(story):
"""Clean up the generated story text."""
story = story.replace("<|im_end|>", "")
story_start = story.find("Once upon")
if story_start == -1:
possible_starts = ["One day", "In a", "There was", "Champ"]
for marker in possible_starts:
story_start = story.find(marker)
if story_start != -1:
break
if story_start != -1:
story = story[story_start:]
lines = story.split('\n')
cleaned_lines = []
for line in lines:
line = line.strip()
if line and not any(skip in line.lower() for skip in ['requirement', 'include these values', 'theme:', 'keep it simple', 'end with', 'write a']):
if not line.startswith(('1.', '2.', '3.', '4.', '5.')):
cleaned_lines.append(line)
return '\n\n'.join(cleaned_lines).strip()
def split_into_paragraphs(text):
"""Split text into paragraphs."""
paragraphs = []
current_paragraph = []
for line in text.split('\n'):
line = line.strip()
if not line:
if current_paragraph:
paragraphs.append(' '.join(current_paragraph))
current_paragraph = []
else:
current_paragraph.append(line)
if current_paragraph:
paragraphs.append(' '.join(current_paragraph))
return [p for p in paragraphs if not any(skip in p.lower()
for skip in ['requirement', 'include these values', 'theme:',
'keep it simple', 'end with', 'write a'])]
def process_generated_prompt(prompt, paragraph):
"""Process and clean up generated image prompts."""
prompt = prompt.replace("<|im_start|>", "").replace("<|im_end|>", "")
prompt = prompt.replace("assistant", "").replace("system", "").replace("user", "")
cleaned_lines = [line.strip() for line in prompt.split('\n')
if line.strip().lower().startswith("watercolor bulldog")]
if cleaned_lines:
prompt = cleaned_lines[0]
else:
setting = "quiet town" if "quiet town" in paragraph.lower() else "park"
mood = "hopeful" if "wished" in paragraph.lower() else "peaceful"
prompt = f"Watercolor bulldog watching friends play in {setting}, {mood} atmosphere."
if not prompt.endswith('.'):
prompt = prompt + '.'
return prompt
# Create the interface
def create_interface():
with gr.Blocks() as demo:
gr.Markdown("# Tech Tales: Story Creation")
with gr.Row():
generate_btn = gr.Button("1. Generate Random Landscape")
with gr.Row():
image_output = gr.Image(label="Generated Image", type="pil", interactive=False)
with gr.Row():
analyze_btn = gr.Button("2. Get Brief Description")
with gr.Row():
analysis_output = gr.Textbox(label="Image Description", lines=3)
with gr.Row():
story_btn = gr.Button("3. Create Children's Story")
with gr.Row():
story_output = gr.Textbox(label="Generated Story", lines=10)
with gr.Row():
prompts_btn = gr.Button("4. Generate Scene Prompts")
with gr.Row():
prompts_output = gr.Textbox(label="Generated Scene Prompts", lines=20)
with gr.Row():
generate_scenes_btn = gr.Button("5. Generate Story Scenes", variant="primary")
with gr.Row():
scene_progress = gr.Textbox(
label="Generation Progress",
lines=6,
interactive=False
)
with gr.Row():
gallery = gr.Gallery(
label="Story Scenes",
show_label=True,
columns=2,
height="auto",
interactive=False
)
with gr.Row():
scene_prompts_display = gr.Textbox(
label="Scene Descriptions",
lines=8,
interactive=False
)
with gr.Row():
add_text_btn = gr.Button("6. Add Text to Scenes", variant="primary")
with gr.Row():
final_gallery = gr.Gallery(
label="Story Book Pages",
show_label=True,
columns=2,
height="auto",
interactive=False
)
with gr.Row():
download_btn = gr.File(
label="Download Story Book",
file_count="multiple",
interactive=False
)
with gr.Row():
tts_btn = gr.Button("7. Read Story Aloud")
audio_output = gr.Audio(label="Story Audio")
# Event handlers
generate_btn.click(
fn=generate_image,
outputs=image_output
)
analyze_btn.click(
fn=analyze_image,
inputs=[image_output],
outputs=analysis_output
)
story_btn.click(
fn=generate_story,
inputs=[analysis_output],
outputs=story_output
)
prompts_btn.click(
fn=generate_image_prompts,
inputs=[story_output],
outputs=prompts_output
)
generate_scenes_btn.click(
fn=generate_all_scenes,
inputs=[prompts_output],
outputs=[gallery, scene_prompts_display, scene_progress]
)
add_text_btn.click(
fn=add_text_to_scenes,
inputs=[gallery, prompts_output],
outputs=[final_gallery, download_btn]
)
tts_btn.click(
fn=generate_combined_audio_from_story,
inputs=[story_output],
outputs=audio_output
)
return demo
if __name__ == "__main__":
demo = create_interface()
demo.launch()