File size: 23,669 Bytes
4eeb369
 
 
 
 
 
 
 
 
 
01c7a6f
4eeb369
 
 
 
 
01c7a6f
76bfb86
01c7a6f
76bfb86
 
 
 
01c7a6f
 
 
 
 
 
 
 
 
 
76bfb86
 
01c7a6f
 
 
 
76bfb86
01c7a6f
4eeb369
 
 
 
 
 
01c7a6f
 
4eeb369
 
 
 
01c7a6f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4eeb369
 
 
 
 
01c7a6f
 
 
4eeb369
 
 
 
 
 
 
 
 
01c7a6f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4eeb369
 
 
 
 
 
 
01c7a6f
4eeb369
 
 
 
 
 
 
 
 
01c7a6f
4eeb369
 
 
 
01c7a6f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4eeb369
 
 
 
01c7a6f
4eeb369
 
 
 
 
 
 
 
 
 
01c7a6f
 
4eeb369
 
 
 
 
 
01c7a6f
 
4eeb369
 
 
 
 
01c7a6f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4eeb369
01c7a6f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4eeb369
 
 
a5abdd6
01c7a6f
 
 
4eeb369
a5abdd6
 
01c7a6f
 
 
 
 
 
 
 
a5abdd6
 
 
 
 
 
 
 
 
 
01c7a6f
 
 
a5abdd6
 
 
01c7a6f
 
 
 
a5abdd6
 
4eeb369
b64f67c
4eeb369
01c7a6f
 
4eeb369
 
d10f43f
 
 
 
 
 
 
 
 
 
4eeb369
 
 
d10f43f
4eeb369
 
 
 
01c7a6f
4eeb369
 
01c7a6f
 
 
4eeb369
 
 
 
 
01c7a6f
d10f43f
 
 
 
 
a5abdd6
4eeb369
b64f67c
4eeb369
9b12e87
 
 
 
 
 
 
 
d10f43f
9b12e87
d10f43f
9b12e87
d10f43f
01c7a6f
 
b64f67c
4eeb369
d10f43f
 
01c7a6f
4eeb369
d10f43f
 
 
4eeb369
d10f43f
9b12e87
d10f43f
 
 
9b12e87
d10f43f
 
01c7a6f
76bfb86
01c7a6f
 
 
 
d10f43f
 
01c7a6f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d10f43f
 
 
 
 
01c7a6f
 
 
 
d10f43f
 
 
 
 
 
01c7a6f
 
 
 
 
 
 
 
 
d10f43f
01c7a6f
76bfb86
01c7a6f
 
d10f43f
 
 
 
 
01c7a6f
 
 
d10f43f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
01c7a6f
 
 
 
 
 
 
 
 
 
 
 
 
a5abdd6
01c7a6f
 
 
 
 
 
 
 
a5abdd6
01c7a6f
 
 
 
 
 
 
 
 
 
 
 
 
 
4eeb369
01c7a6f
4eeb369
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
01c7a6f
4eeb369
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
01c7a6f
4eeb369
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
01c7a6f
4eeb369
01c7a6f
4eeb369
 
 
 
76bfb86
959f26f
4eeb369
 
 
76bfb86
4eeb369
 
 
 
76bfb86
4eeb369
 
 
 
d10f43f
4eeb369
 
 
 
 
 
d10f43f
 
 
4eeb369
 
d10f43f
4eeb369
 
 
 
 
959f26f
 
4eeb369
d10f43f
 
 
 
 
 
 
4eeb369
 
 
 
 
 
 
 
 
959f26f
 
4eeb369
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d10f43f
4eeb369
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
import gradio as gr
from diffusers import StableDiffusionPipeline, DPMSolverMultistepScheduler
from transformers import AutoProcessor, AutoModelForVision2Seq, AutoModelForCausalLM, AutoTokenizer
import torch
from PIL import Image, ImageDraw, ImageFont
import numpy as np
import textwrap
import os
import gc
import re
import psutil
from datetime import datetime
import spaces
from kokoro import KPipeline
import soundfile as sf

def clear_memory():
    """Helper function to clear both CUDA and system memory, safe for Spaces environment"""
    gc.collect()
    
    # Only perform CUDA operations if we're in a GPU task context
    if hasattr(spaces, "current_task") and spaces.current_task and torch.cuda.is_available():
        torch.cuda.empty_cache()
        torch.cuda.synchronize()
    
    process = psutil.Process(os.getpid())
    if hasattr(process, 'memory_info'):
        process.memory_info().rss
    
    gc.collect(generation=0)
    gc.collect(generation=1)
    gc.collect(generation=2)
    
    # Only log GPU stats if we're in a GPU task context
    if hasattr(spaces, "current_task") and spaces.current_task and torch.cuda.is_available():
        print(f"GPU Memory allocated: {torch.cuda.memory_allocated()/1024**2:.2f} MB")
        print(f"GPU Memory cached: {torch.cuda.memory_reserved()/1024**2:.2f} MB")
    print(f"CPU RAM used: {process.memory_info().rss/1024**2:.2f} MB")


# Initialize models at startup - only the lightweight ones
print("Loading models...")

# Load SmolVLM for image analysis
processor_vlm = AutoProcessor.from_pretrained("HuggingFaceTB/SmolVLM-500M-Instruct")
model_vlm = AutoModelForVision2Seq.from_pretrained(
    "HuggingFaceTB/SmolVLM-500M-Instruct", 
    torch_dtype=torch.bfloat16
).to("cuda")

# Load SmolLM2 for story and prompt generation
checkpoint = "HuggingFaceTB/SmolLM2-1.7B-Instruct"
tokenizer_lm = AutoTokenizer.from_pretrained(checkpoint)
model_lm = AutoModelForCausalLM.from_pretrained(checkpoint).to("cuda")

# Initialize Kokoro TTS pipeline
pipeline = KPipeline(lang_code='a')  # 'a' for American English

def load_sd_model():
    """Load Stable Diffusion model only when needed"""
    pipe = StableDiffusionPipeline.from_pretrained(
        "runwayml/stable-diffusion-v1-5",
        torch_dtype=torch.float16,
    )
    pipe.scheduler = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config)
    pipe.to("cuda")
    pipe.enable_attention_slicing()
    return pipe

@torch.inference_mode()
@spaces.GPU(duration=30)
def generate_image():
    """Generate a random landscape image."""
    clear_memory()
    
    pipe = load_sd_model()
    
    default_prompt = "a beautiful, professional landscape photograph"
    default_negative_prompt = "blurry, bad quality, distorted, deformed"
    default_steps = 30
    default_guidance = 7.5
    default_seed = torch.randint(0, 2**32 - 1, (1,)).item()
    
    generator = torch.Generator("cuda").manual_seed(default_seed)
    
    try:
        image = pipe(
            prompt=default_prompt,
            negative_prompt=default_negative_prompt,
            num_inference_steps=default_steps,
            guidance_scale=default_guidance,
            generator=generator,
        ).images[0]
        
        del pipe
        clear_memory()
        return image
        
    except Exception as e:
        print(f"Error generating image: {e}")
        if 'pipe' in locals():
            del pipe
        clear_memory()
        return None

@torch.inference_mode()
@spaces.GPU(duration=30)
def analyze_image(image):
    if image is None:
        return "Please generate an image first."
    
    clear_memory()
    
    if isinstance(image, np.ndarray):
        image = Image.fromarray(image)
    
    messages = [
        {
            "role": "user",
            "content": [
                {"type": "image"},
                {"type": "text", "text": "Describe this image and Be brief but descriptive."}
            ]
        }
    ]
    
    try:
        prompt = processor_vlm.apply_chat_template(messages, add_generation_prompt=True)
        
        inputs = processor_vlm(
            text=prompt,
            images=[image],
            return_tensors="pt"
        ).to('cuda')
        
        outputs = model_vlm.generate(
            input_ids=inputs.input_ids,
            pixel_values=inputs.pixel_values,
            attention_mask=inputs.attention_mask,
            num_return_sequences=1,
            no_repeat_ngram_size=2,
            max_new_tokens=500,  
            min_new_tokens=10 
        )
        
        description = processor_vlm.decode(outputs[0], skip_special_tokens=True)
        description = re.sub(r".*?Assistant:\s*", "", description, flags=re.DOTALL).strip()
        
        # Split into sentences and take only the first three
        sentences = re.split(r'(?<=[.!?])\s+', description)
        description = ' '.join(sentences[:3])
        
        clear_memory()
        return description
        
    except Exception as e:
        print(f"Error analyzing image: {e}")
        clear_memory()
        return "Error analyzing image. Please try again."

@torch.inference_mode()
@spaces.GPU(duration=30)
def generate_story(image_description):
    clear_memory()
    
    story_prompt = f"""Write a short children's story (one chapter, about 500 words) based on this scene: {image_description}

    Requirements:
    1. Main character: An English bulldog named Champ
    2. Include these values: confidence, teamwork, caring, and hope
    3. Theme: "We are stronger together than as individuals"
    4. Keep it simple and engaging for young children
    5. End with a simple moral lesson"""

    try:
        messages = [{"role": "user", "content": story_prompt}]
        input_text = tokenizer_lm.apply_chat_template(messages, tokenize=False)
        
        inputs = tokenizer_lm.encode(input_text, return_tensors="pt").to("cuda")
        
        outputs = model_lm.generate(
            inputs,
            max_new_tokens=750,
            temperature=0.7,
            top_p=0.9,
            do_sample=True,
            repetition_penalty=1.2
        )
        
        story = tokenizer_lm.decode(outputs[0])
        story = clean_story_output(story)
        
        clear_memory()
        return story
        
    except Exception as e:
        print(f"Error generating story: {e}")
        clear_memory()
        return "Error generating story. Please try again."

@torch.inference_mode()
@spaces.GPU(duration=30)
def generate_image_prompts(story_text):
    clear_memory()
    
    paragraphs = split_into_paragraphs(story_text)
    all_prompts = []
    prompt_instruction = '''Here is a story paragraph: {paragraph}

    Start your response with "Watercolor bulldog" and describe what Champ is doing in this scene. Add where it takes place and one mood detail. Keep it short.'''
    
    try:
        for i, paragraph in enumerate(paragraphs, 1):
            messages = [{"role": "user", "content": prompt_instruction.format(paragraph=paragraph)}]
            input_text = tokenizer_lm.apply_chat_template(messages, tokenize=False)
            
            inputs = tokenizer_lm.encode(input_text, return_tensors="pt").to("cuda")
            
            outputs = model_lm.generate(
                inputs,
                max_new_tokens=30,
                temperature=0.5,
                top_p=0.9,
                do_sample=True,
                repetition_penalty=1.2
            )
            
            prompt = process_generated_prompt(tokenizer_lm.decode(outputs[0]), paragraph)
            section = f"Paragraph {i}:\n{paragraph}\n\nScenery Prompt {i}:\n{prompt}\n\n{'='*50}"
            all_prompts.append(section)
            
            clear_memory()
        
        return '\n'.join(all_prompts)
        
    except Exception as e:
        print(f"Error generating prompts: {e}")
        clear_memory()
        return "Error generating prompts. Please try again."

@torch.inference_mode()
@spaces.GPU(duration=60)
def generate_story_image(prompt, seed=-1):
    clear_memory()
    
    pipe = load_sd_model()
    
    try:
        pipe.load_lora_weights("Prof-Hunt/lora-bulldog")
        
        generator = torch.Generator("cuda")
        if seed != -1:
            generator.manual_seed(seed)
        else:
            generator.manual_seed(torch.randint(0, 2**32 - 1, (1,)).item())

        enhanced_prompt = f"{prompt}, watercolor style, children's book illustration, soft colors"

        image = pipe(
            prompt=enhanced_prompt,
            negative_prompt="deformed, ugly, blurry, bad art, poor quality, distorted",
            num_inference_steps=50,
            guidance_scale=15,
            generator=generator
        ).images[0]

        pipe.unload_lora_weights()
        del pipe
        clear_memory()
        return image

    except Exception as e:
        print(f"Error generating image: {e}")
        if 'pipe' in locals():
            pipe.unload_lora_weights()
            del pipe
        clear_memory()
        return None

@torch.inference_mode()
@spaces.GPU(duration=180)
def generate_all_scenes(prompts_text):
    clear_memory()
    
    generated_images = []
    formatted_prompts = []
    progress_messages = []
    total_scenes = len([s for s in prompts_text.split('='*50) if s.strip()])
    
    def update_progress():
        """Create a progress message showing completed/total scenes"""
        completed = len(generated_images)
        message = f"Generated {completed}/{total_scenes} scenes\n\n"
        if progress_messages:
            message += "\n".join(progress_messages[-3:])  # Show last 3 status messages
        return message
    
    sections = prompts_text.split('='*50)
    
    for section_num, section in enumerate(sections, 1):
        if not section.strip():
            continue
        
        scene_prompt = None
        for line in section.split('\n'):
            if 'Scenery Prompt' in line:
                scene_num = line.split('Scenery Prompt')[1].split(':')[0].strip()
                next_line_index = section.split('\n').index(line) + 1
                if next_line_index < len(section.split('\n')):
                    scene_prompt = section.split('\n')[next_line_index].strip()
                    formatted_prompts.append(f"Scene {scene_num}: {scene_prompt}")
                break
        
        if scene_prompt:
            try:
                clear_memory()
                status_msg = f"🎨 Creating scene {section_num}: '{scene_prompt[:50]}...'"
                progress_messages.append(status_msg)
                
                # Yield progress update
                yield generated_images, "\n\n".join(formatted_prompts), update_progress()
                
                image = generate_story_image(scene_prompt)
                
                if image is not None:
                    # Convert PIL Image to numpy array with explicit mode conversion
                    pil_image = image if isinstance(image, Image.Image) else Image.fromarray(image)
                    pil_image = pil_image.convert('RGB')  # Ensure RGB mode
                    img_array = np.array(pil_image)
                    
                    # Verify array shape and type
                    if len(img_array.shape) == 3 and img_array.shape[2] == 3:
                        generated_images.append(img_array)
                        progress_messages.append(f"βœ… Successfully completed scene {section_num}")
                    else:
                        progress_messages.append(f"❌ Error: Invalid image format for scene {section_num}")
                else:
                    progress_messages.append(f"❌ Failed to generate scene {section_num}")
                
                clear_memory()
                
            except Exception as e:
                error_msg = f"❌ Error generating scene {section_num}: {str(e)}"
                progress_messages.append(error_msg)
                clear_memory()
                continue
            
            # Yield progress update after each scene
            yield generated_images, "\n\n".join(formatted_prompts), update_progress()
    
    # Final status update
    if not generated_images:
        progress_messages.append("❌ No images were successfully generated")
    else:
        progress_messages.append(f"βœ… Successfully completed all {len(generated_images)} scenes!")
    
    # Final yield
    yield generated_images, "\n\n".join(formatted_prompts), update_progress()
    
@spaces.GPU(duration=60)
def add_text_to_scenes(gallery_images, prompts_text):
    if not isinstance(gallery_images, list):
        return [], []
    
    clear_memory()
    
    sections = prompts_text.split('='*50)
    overlaid_images = []
    output_files = []
    
    temp_dir = "temp_book_pages"
    os.makedirs(temp_dir, exist_ok=True)
    
    for i, (image_data, section) in enumerate(zip(gallery_images, sections)):
        if not section.strip():
            continue
            
        lines = [line.strip() for line in section.split('\n') if line.strip()]
        paragraph = None
        for j, line in enumerate(lines):
            if line.startswith('Paragraph'):
                if j + 1 < len(lines):
                    paragraph = lines[j + 1]
                    break
        
        if paragraph and image_data is not None:
            try:
                # Handle tuple case (image, label) from gallery
                if isinstance(image_data, tuple):
                    image_data = image_data[0]
                
                # Convert numpy array to PIL Image
                if isinstance(image_data, np.ndarray):
                    image = Image.fromarray(image_data)
                else:
                    image = image_data
                
                print(f"Processing image {i+1}, type: {type(image)}")
                
                # Ensure we have a PIL Image
                if not isinstance(image, Image.Image):
                    raise TypeError(f"Expected PIL Image, got {type(image)}")
                    
                overlaid_img = overlay_text_on_image(image, paragraph)
                if overlaid_img is not None:
                    overlaid_array = np.array(overlaid_img)
                    overlaid_images.append(overlaid_array)
                    
                    output_path = os.path.join(temp_dir, f"panel_{i+1}.png")
                    overlaid_img.save(output_path)
                    output_files.append(output_path)
                    print(f"Successfully processed image {i+1}")
            except Exception as e:
                print(f"Error processing image {i+1}: {str(e)}")
                continue
    
    if not overlaid_images:
        print("No images were successfully processed")
    else:
        print(f"Successfully processed {len(overlaid_images)} images")
    
    clear_memory()
    return overlaid_images, output_files

def overlay_text_on_image(image, text):
    """Helper function to overlay text on an image"""
    if image is None:
        return None
    
    try:
        # Ensure we're working with RGB mode
        img = image.convert('RGB')
        draw = ImageDraw.Draw(img)
        
        # Calculate font size based on image dimensions
        font_size = int(img.width * 0.025)
        try:
            font = ImageFont.truetype("/usr/share/fonts/truetype/dejavu/DejaVuSans-Bold.ttf", font_size)
        except:
            font = ImageFont.load_default()

        # Calculate text positioning
        y_position = int(img.height * 0.005)
        x_margin = int(img.width * 0.005)
        available_width = img.width - (2 * x_margin)
        
        # Wrap text to fit image width
        wrapped_text = textwrap.fill(text, width=int(available_width / (font_size * 0.6)))
        
        # Add white outline to text for better readability
        outline_color = (255, 255, 255)
        text_color = (0, 0, 0)
        offsets = [-2, -1, 1, 2]

        # Draw text outline
        for dx in offsets:
            for dy in offsets:
                draw.multiline_text(
                    (x_margin + dx, y_position + dy),
                    wrapped_text,
                    font=font,
                    fill=outline_color
                )

        # Draw main text
        draw.multiline_text(
            (x_margin, y_position),
            wrapped_text,
            font=font,
            fill=text_color
        )

        return img
        
    except Exception as e:
        print(f"Error in overlay_text_on_image: {e}")
        return None
        
def generate_combined_audio_from_story(story_text, voice='af_heart', speed=1):
    clear_memory()
    
    if not story_text:
        return None
    
    paragraphs = split_into_paragraphs(story_text)
    combined_audio = []
    
    try:
        for paragraph in paragraphs:
            if not paragraph.strip():
                continue

            generator = pipeline(
                paragraph,
                voice=voice,
                speed=speed,
                split_pattern=r'\n+'
            )
            for _, _, audio in generator:
                combined_audio.extend(audio)

        # Convert combined audio to NumPy array and save
        combined_audio = np.array(combined_audio)
        filename = "combined_story.wav"
        sf.write(filename, combined_audio, 24000)  # Save audio as .wav
        
        clear_memory()
        return filename
        
    except Exception as e:
        print(f"Error generating audio: {e}")
        clear_memory()
        return None

# Helper functions
def clean_story_output(story):
    """Clean up the generated story text."""
    story = story.replace("<|im_end|>", "")
    
    story_start = story.find("Once upon")
    if story_start == -1:
        possible_starts = ["One day", "In a", "There was", "Champ"]
        for marker in possible_starts:
            story_start = story.find(marker)
            if story_start != -1:
                break
    
    if story_start != -1:
        story = story[story_start:]
    
    lines = story.split('\n')
    cleaned_lines = []
    for line in lines:
        line = line.strip()
        if line and not any(skip in line.lower() for skip in ['requirement', 'include these values', 'theme:', 'keep it simple', 'end with', 'write a']):
            if not line.startswith(('1.', '2.', '3.', '4.', '5.')):
                cleaned_lines.append(line)
    
    return '\n\n'.join(cleaned_lines).strip()

def split_into_paragraphs(text):
    """Split text into paragraphs."""
    paragraphs = []
    current_paragraph = []
    
    for line in text.split('\n'):
        line = line.strip()
        if not line:
            if current_paragraph:
                paragraphs.append(' '.join(current_paragraph))
                current_paragraph = []
        else:
            current_paragraph.append(line)
    
    if current_paragraph:
        paragraphs.append(' '.join(current_paragraph))
    
    return [p for p in paragraphs if not any(skip in p.lower() 
            for skip in ['requirement', 'include these values', 'theme:', 
                        'keep it simple', 'end with', 'write a'])]

def process_generated_prompt(prompt, paragraph):
    """Process and clean up generated image prompts."""
    prompt = prompt.replace("<|im_start|>", "").replace("<|im_end|>", "")
    prompt = prompt.replace("assistant", "").replace("system", "").replace("user", "")
    
    cleaned_lines = [line.strip() for line in prompt.split('\n')
                    if line.strip().lower().startswith("watercolor bulldog")]
    
    if cleaned_lines:
        prompt = cleaned_lines[0]
    else:
        setting = "quiet town" if "quiet town" in paragraph.lower() else "park"
        mood = "hopeful" if "wished" in paragraph.lower() else "peaceful"
        prompt = f"Watercolor bulldog watching friends play in {setting}, {mood} atmosphere."
    
    if not prompt.endswith('.'):
        prompt = prompt + '.'
    
    return prompt

# Create the interface
def create_interface():
    with gr.Blocks() as demo:
        gr.Markdown("# Tech Tales: Story Creation")
        
        with gr.Row():
            generate_btn = gr.Button("1. Generate Random Landscape")
        with gr.Row():
            image_output = gr.Image(label="Generated Image", type="pil", interactive=False)
            
        with gr.Row():
            analyze_btn = gr.Button("2. Get Brief Description")
        with gr.Row():
            analysis_output = gr.Textbox(label="Image Description", lines=3)
        
        with gr.Row():
            story_btn = gr.Button("3. Create Children's Story")
        with gr.Row():
            story_output = gr.Textbox(label="Generated Story", lines=10)
        
        with gr.Row():
            prompts_btn = gr.Button("4. Generate Scene Prompts")
        with gr.Row():   
            prompts_output = gr.Textbox(label="Generated Scene Prompts", lines=20)
        
        with gr.Row():
            generate_scenes_btn = gr.Button("5. Generate Story Scenes", variant="primary")
            
        with gr.Row():
            scene_progress = gr.Textbox(
                label="Generation Progress",
                lines=6,
                interactive=False
            )
            
        with gr.Row():
            gallery = gr.Gallery(
                label="Story Scenes",
                show_label=True,
                columns=2,
                height="auto",
                interactive=False
            )
            
        with gr.Row():
            scene_prompts_display = gr.Textbox(
                label="Scene Descriptions",
                lines=8,
                interactive=False
            )
        
        with gr.Row():
            add_text_btn = gr.Button("6. Add Text to Scenes", variant="primary")
        
        with gr.Row():
            final_gallery = gr.Gallery(
                label="Story Book Pages",
                show_label=True,
                columns=2,
                height="auto",
                interactive=False
            )
            
        with gr.Row():
            download_btn = gr.File(
                label="Download Story Book",
                file_count="multiple",
                interactive=False
            )
            
        with gr.Row():
            tts_btn = gr.Button("7. Read Story Aloud")
            audio_output = gr.Audio(label="Story Audio")

        # Event handlers
        generate_btn.click(
            fn=generate_image,
            outputs=image_output
        )
        
        analyze_btn.click(
            fn=analyze_image,
            inputs=[image_output],
            outputs=analysis_output
        )
        
        story_btn.click(
            fn=generate_story,
            inputs=[analysis_output],
            outputs=story_output
        )
        
        prompts_btn.click(
            fn=generate_image_prompts,
            inputs=[story_output],
            outputs=prompts_output
        )
        
        generate_scenes_btn.click(
            fn=generate_all_scenes,
            inputs=[prompts_output],
            outputs=[gallery, scene_prompts_display, scene_progress]
        )
        
        add_text_btn.click(
            fn=add_text_to_scenes,
            inputs=[gallery, prompts_output],
            outputs=[final_gallery, download_btn]
        )
        
        tts_btn.click(
            fn=generate_combined_audio_from_story,
            inputs=[story_output],
            outputs=audio_output
        )

    return demo
if __name__ == "__main__":
    demo = create_interface()
    demo.launch()