Spaces:
Runtime error
Runtime error
File size: 23,669 Bytes
4eeb369 01c7a6f 4eeb369 01c7a6f 76bfb86 01c7a6f 76bfb86 01c7a6f 76bfb86 01c7a6f 76bfb86 01c7a6f 4eeb369 01c7a6f 4eeb369 01c7a6f 4eeb369 01c7a6f 4eeb369 01c7a6f 4eeb369 01c7a6f 4eeb369 01c7a6f 4eeb369 01c7a6f 4eeb369 01c7a6f 4eeb369 01c7a6f 4eeb369 01c7a6f 4eeb369 01c7a6f 4eeb369 01c7a6f 4eeb369 a5abdd6 01c7a6f 4eeb369 a5abdd6 01c7a6f a5abdd6 01c7a6f a5abdd6 01c7a6f a5abdd6 4eeb369 b64f67c 4eeb369 01c7a6f 4eeb369 d10f43f 4eeb369 d10f43f 4eeb369 01c7a6f 4eeb369 01c7a6f 4eeb369 01c7a6f d10f43f a5abdd6 4eeb369 b64f67c 4eeb369 9b12e87 d10f43f 9b12e87 d10f43f 9b12e87 d10f43f 01c7a6f b64f67c 4eeb369 d10f43f 01c7a6f 4eeb369 d10f43f 4eeb369 d10f43f 9b12e87 d10f43f 9b12e87 d10f43f 01c7a6f 76bfb86 01c7a6f d10f43f 01c7a6f d10f43f 01c7a6f d10f43f 01c7a6f d10f43f 01c7a6f 76bfb86 01c7a6f d10f43f 01c7a6f d10f43f 01c7a6f a5abdd6 01c7a6f a5abdd6 01c7a6f 4eeb369 01c7a6f 4eeb369 01c7a6f 4eeb369 01c7a6f 4eeb369 01c7a6f 4eeb369 01c7a6f 4eeb369 76bfb86 959f26f 4eeb369 76bfb86 4eeb369 76bfb86 4eeb369 d10f43f 4eeb369 d10f43f 4eeb369 d10f43f 4eeb369 959f26f 4eeb369 d10f43f 4eeb369 959f26f 4eeb369 d10f43f 4eeb369 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 |
import gradio as gr
from diffusers import StableDiffusionPipeline, DPMSolverMultistepScheduler
from transformers import AutoProcessor, AutoModelForVision2Seq, AutoModelForCausalLM, AutoTokenizer
import torch
from PIL import Image, ImageDraw, ImageFont
import numpy as np
import textwrap
import os
import gc
import re
import psutil
from datetime import datetime
import spaces
from kokoro import KPipeline
import soundfile as sf
def clear_memory():
"""Helper function to clear both CUDA and system memory, safe for Spaces environment"""
gc.collect()
# Only perform CUDA operations if we're in a GPU task context
if hasattr(spaces, "current_task") and spaces.current_task and torch.cuda.is_available():
torch.cuda.empty_cache()
torch.cuda.synchronize()
process = psutil.Process(os.getpid())
if hasattr(process, 'memory_info'):
process.memory_info().rss
gc.collect(generation=0)
gc.collect(generation=1)
gc.collect(generation=2)
# Only log GPU stats if we're in a GPU task context
if hasattr(spaces, "current_task") and spaces.current_task and torch.cuda.is_available():
print(f"GPU Memory allocated: {torch.cuda.memory_allocated()/1024**2:.2f} MB")
print(f"GPU Memory cached: {torch.cuda.memory_reserved()/1024**2:.2f} MB")
print(f"CPU RAM used: {process.memory_info().rss/1024**2:.2f} MB")
# Initialize models at startup - only the lightweight ones
print("Loading models...")
# Load SmolVLM for image analysis
processor_vlm = AutoProcessor.from_pretrained("HuggingFaceTB/SmolVLM-500M-Instruct")
model_vlm = AutoModelForVision2Seq.from_pretrained(
"HuggingFaceTB/SmolVLM-500M-Instruct",
torch_dtype=torch.bfloat16
).to("cuda")
# Load SmolLM2 for story and prompt generation
checkpoint = "HuggingFaceTB/SmolLM2-1.7B-Instruct"
tokenizer_lm = AutoTokenizer.from_pretrained(checkpoint)
model_lm = AutoModelForCausalLM.from_pretrained(checkpoint).to("cuda")
# Initialize Kokoro TTS pipeline
pipeline = KPipeline(lang_code='a') # 'a' for American English
def load_sd_model():
"""Load Stable Diffusion model only when needed"""
pipe = StableDiffusionPipeline.from_pretrained(
"runwayml/stable-diffusion-v1-5",
torch_dtype=torch.float16,
)
pipe.scheduler = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config)
pipe.to("cuda")
pipe.enable_attention_slicing()
return pipe
@torch.inference_mode()
@spaces.GPU(duration=30)
def generate_image():
"""Generate a random landscape image."""
clear_memory()
pipe = load_sd_model()
default_prompt = "a beautiful, professional landscape photograph"
default_negative_prompt = "blurry, bad quality, distorted, deformed"
default_steps = 30
default_guidance = 7.5
default_seed = torch.randint(0, 2**32 - 1, (1,)).item()
generator = torch.Generator("cuda").manual_seed(default_seed)
try:
image = pipe(
prompt=default_prompt,
negative_prompt=default_negative_prompt,
num_inference_steps=default_steps,
guidance_scale=default_guidance,
generator=generator,
).images[0]
del pipe
clear_memory()
return image
except Exception as e:
print(f"Error generating image: {e}")
if 'pipe' in locals():
del pipe
clear_memory()
return None
@torch.inference_mode()
@spaces.GPU(duration=30)
def analyze_image(image):
if image is None:
return "Please generate an image first."
clear_memory()
if isinstance(image, np.ndarray):
image = Image.fromarray(image)
messages = [
{
"role": "user",
"content": [
{"type": "image"},
{"type": "text", "text": "Describe this image and Be brief but descriptive."}
]
}
]
try:
prompt = processor_vlm.apply_chat_template(messages, add_generation_prompt=True)
inputs = processor_vlm(
text=prompt,
images=[image],
return_tensors="pt"
).to('cuda')
outputs = model_vlm.generate(
input_ids=inputs.input_ids,
pixel_values=inputs.pixel_values,
attention_mask=inputs.attention_mask,
num_return_sequences=1,
no_repeat_ngram_size=2,
max_new_tokens=500,
min_new_tokens=10
)
description = processor_vlm.decode(outputs[0], skip_special_tokens=True)
description = re.sub(r".*?Assistant:\s*", "", description, flags=re.DOTALL).strip()
# Split into sentences and take only the first three
sentences = re.split(r'(?<=[.!?])\s+', description)
description = ' '.join(sentences[:3])
clear_memory()
return description
except Exception as e:
print(f"Error analyzing image: {e}")
clear_memory()
return "Error analyzing image. Please try again."
@torch.inference_mode()
@spaces.GPU(duration=30)
def generate_story(image_description):
clear_memory()
story_prompt = f"""Write a short children's story (one chapter, about 500 words) based on this scene: {image_description}
Requirements:
1. Main character: An English bulldog named Champ
2. Include these values: confidence, teamwork, caring, and hope
3. Theme: "We are stronger together than as individuals"
4. Keep it simple and engaging for young children
5. End with a simple moral lesson"""
try:
messages = [{"role": "user", "content": story_prompt}]
input_text = tokenizer_lm.apply_chat_template(messages, tokenize=False)
inputs = tokenizer_lm.encode(input_text, return_tensors="pt").to("cuda")
outputs = model_lm.generate(
inputs,
max_new_tokens=750,
temperature=0.7,
top_p=0.9,
do_sample=True,
repetition_penalty=1.2
)
story = tokenizer_lm.decode(outputs[0])
story = clean_story_output(story)
clear_memory()
return story
except Exception as e:
print(f"Error generating story: {e}")
clear_memory()
return "Error generating story. Please try again."
@torch.inference_mode()
@spaces.GPU(duration=30)
def generate_image_prompts(story_text):
clear_memory()
paragraphs = split_into_paragraphs(story_text)
all_prompts = []
prompt_instruction = '''Here is a story paragraph: {paragraph}
Start your response with "Watercolor bulldog" and describe what Champ is doing in this scene. Add where it takes place and one mood detail. Keep it short.'''
try:
for i, paragraph in enumerate(paragraphs, 1):
messages = [{"role": "user", "content": prompt_instruction.format(paragraph=paragraph)}]
input_text = tokenizer_lm.apply_chat_template(messages, tokenize=False)
inputs = tokenizer_lm.encode(input_text, return_tensors="pt").to("cuda")
outputs = model_lm.generate(
inputs,
max_new_tokens=30,
temperature=0.5,
top_p=0.9,
do_sample=True,
repetition_penalty=1.2
)
prompt = process_generated_prompt(tokenizer_lm.decode(outputs[0]), paragraph)
section = f"Paragraph {i}:\n{paragraph}\n\nScenery Prompt {i}:\n{prompt}\n\n{'='*50}"
all_prompts.append(section)
clear_memory()
return '\n'.join(all_prompts)
except Exception as e:
print(f"Error generating prompts: {e}")
clear_memory()
return "Error generating prompts. Please try again."
@torch.inference_mode()
@spaces.GPU(duration=60)
def generate_story_image(prompt, seed=-1):
clear_memory()
pipe = load_sd_model()
try:
pipe.load_lora_weights("Prof-Hunt/lora-bulldog")
generator = torch.Generator("cuda")
if seed != -1:
generator.manual_seed(seed)
else:
generator.manual_seed(torch.randint(0, 2**32 - 1, (1,)).item())
enhanced_prompt = f"{prompt}, watercolor style, children's book illustration, soft colors"
image = pipe(
prompt=enhanced_prompt,
negative_prompt="deformed, ugly, blurry, bad art, poor quality, distorted",
num_inference_steps=50,
guidance_scale=15,
generator=generator
).images[0]
pipe.unload_lora_weights()
del pipe
clear_memory()
return image
except Exception as e:
print(f"Error generating image: {e}")
if 'pipe' in locals():
pipe.unload_lora_weights()
del pipe
clear_memory()
return None
@torch.inference_mode()
@spaces.GPU(duration=180)
def generate_all_scenes(prompts_text):
clear_memory()
generated_images = []
formatted_prompts = []
progress_messages = []
total_scenes = len([s for s in prompts_text.split('='*50) if s.strip()])
def update_progress():
"""Create a progress message showing completed/total scenes"""
completed = len(generated_images)
message = f"Generated {completed}/{total_scenes} scenes\n\n"
if progress_messages:
message += "\n".join(progress_messages[-3:]) # Show last 3 status messages
return message
sections = prompts_text.split('='*50)
for section_num, section in enumerate(sections, 1):
if not section.strip():
continue
scene_prompt = None
for line in section.split('\n'):
if 'Scenery Prompt' in line:
scene_num = line.split('Scenery Prompt')[1].split(':')[0].strip()
next_line_index = section.split('\n').index(line) + 1
if next_line_index < len(section.split('\n')):
scene_prompt = section.split('\n')[next_line_index].strip()
formatted_prompts.append(f"Scene {scene_num}: {scene_prompt}")
break
if scene_prompt:
try:
clear_memory()
status_msg = f"π¨ Creating scene {section_num}: '{scene_prompt[:50]}...'"
progress_messages.append(status_msg)
# Yield progress update
yield generated_images, "\n\n".join(formatted_prompts), update_progress()
image = generate_story_image(scene_prompt)
if image is not None:
# Convert PIL Image to numpy array with explicit mode conversion
pil_image = image if isinstance(image, Image.Image) else Image.fromarray(image)
pil_image = pil_image.convert('RGB') # Ensure RGB mode
img_array = np.array(pil_image)
# Verify array shape and type
if len(img_array.shape) == 3 and img_array.shape[2] == 3:
generated_images.append(img_array)
progress_messages.append(f"β
Successfully completed scene {section_num}")
else:
progress_messages.append(f"β Error: Invalid image format for scene {section_num}")
else:
progress_messages.append(f"β Failed to generate scene {section_num}")
clear_memory()
except Exception as e:
error_msg = f"β Error generating scene {section_num}: {str(e)}"
progress_messages.append(error_msg)
clear_memory()
continue
# Yield progress update after each scene
yield generated_images, "\n\n".join(formatted_prompts), update_progress()
# Final status update
if not generated_images:
progress_messages.append("β No images were successfully generated")
else:
progress_messages.append(f"β
Successfully completed all {len(generated_images)} scenes!")
# Final yield
yield generated_images, "\n\n".join(formatted_prompts), update_progress()
@spaces.GPU(duration=60)
def add_text_to_scenes(gallery_images, prompts_text):
if not isinstance(gallery_images, list):
return [], []
clear_memory()
sections = prompts_text.split('='*50)
overlaid_images = []
output_files = []
temp_dir = "temp_book_pages"
os.makedirs(temp_dir, exist_ok=True)
for i, (image_data, section) in enumerate(zip(gallery_images, sections)):
if not section.strip():
continue
lines = [line.strip() for line in section.split('\n') if line.strip()]
paragraph = None
for j, line in enumerate(lines):
if line.startswith('Paragraph'):
if j + 1 < len(lines):
paragraph = lines[j + 1]
break
if paragraph and image_data is not None:
try:
# Handle tuple case (image, label) from gallery
if isinstance(image_data, tuple):
image_data = image_data[0]
# Convert numpy array to PIL Image
if isinstance(image_data, np.ndarray):
image = Image.fromarray(image_data)
else:
image = image_data
print(f"Processing image {i+1}, type: {type(image)}")
# Ensure we have a PIL Image
if not isinstance(image, Image.Image):
raise TypeError(f"Expected PIL Image, got {type(image)}")
overlaid_img = overlay_text_on_image(image, paragraph)
if overlaid_img is not None:
overlaid_array = np.array(overlaid_img)
overlaid_images.append(overlaid_array)
output_path = os.path.join(temp_dir, f"panel_{i+1}.png")
overlaid_img.save(output_path)
output_files.append(output_path)
print(f"Successfully processed image {i+1}")
except Exception as e:
print(f"Error processing image {i+1}: {str(e)}")
continue
if not overlaid_images:
print("No images were successfully processed")
else:
print(f"Successfully processed {len(overlaid_images)} images")
clear_memory()
return overlaid_images, output_files
def overlay_text_on_image(image, text):
"""Helper function to overlay text on an image"""
if image is None:
return None
try:
# Ensure we're working with RGB mode
img = image.convert('RGB')
draw = ImageDraw.Draw(img)
# Calculate font size based on image dimensions
font_size = int(img.width * 0.025)
try:
font = ImageFont.truetype("/usr/share/fonts/truetype/dejavu/DejaVuSans-Bold.ttf", font_size)
except:
font = ImageFont.load_default()
# Calculate text positioning
y_position = int(img.height * 0.005)
x_margin = int(img.width * 0.005)
available_width = img.width - (2 * x_margin)
# Wrap text to fit image width
wrapped_text = textwrap.fill(text, width=int(available_width / (font_size * 0.6)))
# Add white outline to text for better readability
outline_color = (255, 255, 255)
text_color = (0, 0, 0)
offsets = [-2, -1, 1, 2]
# Draw text outline
for dx in offsets:
for dy in offsets:
draw.multiline_text(
(x_margin + dx, y_position + dy),
wrapped_text,
font=font,
fill=outline_color
)
# Draw main text
draw.multiline_text(
(x_margin, y_position),
wrapped_text,
font=font,
fill=text_color
)
return img
except Exception as e:
print(f"Error in overlay_text_on_image: {e}")
return None
def generate_combined_audio_from_story(story_text, voice='af_heart', speed=1):
clear_memory()
if not story_text:
return None
paragraphs = split_into_paragraphs(story_text)
combined_audio = []
try:
for paragraph in paragraphs:
if not paragraph.strip():
continue
generator = pipeline(
paragraph,
voice=voice,
speed=speed,
split_pattern=r'\n+'
)
for _, _, audio in generator:
combined_audio.extend(audio)
# Convert combined audio to NumPy array and save
combined_audio = np.array(combined_audio)
filename = "combined_story.wav"
sf.write(filename, combined_audio, 24000) # Save audio as .wav
clear_memory()
return filename
except Exception as e:
print(f"Error generating audio: {e}")
clear_memory()
return None
# Helper functions
def clean_story_output(story):
"""Clean up the generated story text."""
story = story.replace("<|im_end|>", "")
story_start = story.find("Once upon")
if story_start == -1:
possible_starts = ["One day", "In a", "There was", "Champ"]
for marker in possible_starts:
story_start = story.find(marker)
if story_start != -1:
break
if story_start != -1:
story = story[story_start:]
lines = story.split('\n')
cleaned_lines = []
for line in lines:
line = line.strip()
if line and not any(skip in line.lower() for skip in ['requirement', 'include these values', 'theme:', 'keep it simple', 'end with', 'write a']):
if not line.startswith(('1.', '2.', '3.', '4.', '5.')):
cleaned_lines.append(line)
return '\n\n'.join(cleaned_lines).strip()
def split_into_paragraphs(text):
"""Split text into paragraphs."""
paragraphs = []
current_paragraph = []
for line in text.split('\n'):
line = line.strip()
if not line:
if current_paragraph:
paragraphs.append(' '.join(current_paragraph))
current_paragraph = []
else:
current_paragraph.append(line)
if current_paragraph:
paragraphs.append(' '.join(current_paragraph))
return [p for p in paragraphs if not any(skip in p.lower()
for skip in ['requirement', 'include these values', 'theme:',
'keep it simple', 'end with', 'write a'])]
def process_generated_prompt(prompt, paragraph):
"""Process and clean up generated image prompts."""
prompt = prompt.replace("<|im_start|>", "").replace("<|im_end|>", "")
prompt = prompt.replace("assistant", "").replace("system", "").replace("user", "")
cleaned_lines = [line.strip() for line in prompt.split('\n')
if line.strip().lower().startswith("watercolor bulldog")]
if cleaned_lines:
prompt = cleaned_lines[0]
else:
setting = "quiet town" if "quiet town" in paragraph.lower() else "park"
mood = "hopeful" if "wished" in paragraph.lower() else "peaceful"
prompt = f"Watercolor bulldog watching friends play in {setting}, {mood} atmosphere."
if not prompt.endswith('.'):
prompt = prompt + '.'
return prompt
# Create the interface
def create_interface():
with gr.Blocks() as demo:
gr.Markdown("# Tech Tales: Story Creation")
with gr.Row():
generate_btn = gr.Button("1. Generate Random Landscape")
with gr.Row():
image_output = gr.Image(label="Generated Image", type="pil", interactive=False)
with gr.Row():
analyze_btn = gr.Button("2. Get Brief Description")
with gr.Row():
analysis_output = gr.Textbox(label="Image Description", lines=3)
with gr.Row():
story_btn = gr.Button("3. Create Children's Story")
with gr.Row():
story_output = gr.Textbox(label="Generated Story", lines=10)
with gr.Row():
prompts_btn = gr.Button("4. Generate Scene Prompts")
with gr.Row():
prompts_output = gr.Textbox(label="Generated Scene Prompts", lines=20)
with gr.Row():
generate_scenes_btn = gr.Button("5. Generate Story Scenes", variant="primary")
with gr.Row():
scene_progress = gr.Textbox(
label="Generation Progress",
lines=6,
interactive=False
)
with gr.Row():
gallery = gr.Gallery(
label="Story Scenes",
show_label=True,
columns=2,
height="auto",
interactive=False
)
with gr.Row():
scene_prompts_display = gr.Textbox(
label="Scene Descriptions",
lines=8,
interactive=False
)
with gr.Row():
add_text_btn = gr.Button("6. Add Text to Scenes", variant="primary")
with gr.Row():
final_gallery = gr.Gallery(
label="Story Book Pages",
show_label=True,
columns=2,
height="auto",
interactive=False
)
with gr.Row():
download_btn = gr.File(
label="Download Story Book",
file_count="multiple",
interactive=False
)
with gr.Row():
tts_btn = gr.Button("7. Read Story Aloud")
audio_output = gr.Audio(label="Story Audio")
# Event handlers
generate_btn.click(
fn=generate_image,
outputs=image_output
)
analyze_btn.click(
fn=analyze_image,
inputs=[image_output],
outputs=analysis_output
)
story_btn.click(
fn=generate_story,
inputs=[analysis_output],
outputs=story_output
)
prompts_btn.click(
fn=generate_image_prompts,
inputs=[story_output],
outputs=prompts_output
)
generate_scenes_btn.click(
fn=generate_all_scenes,
inputs=[prompts_output],
outputs=[gallery, scene_prompts_display, scene_progress]
)
add_text_btn.click(
fn=add_text_to_scenes,
inputs=[gallery, prompts_output],
outputs=[final_gallery, download_btn]
)
tts_btn.click(
fn=generate_combined_audio_from_story,
inputs=[story_output],
outputs=audio_output
)
return demo
if __name__ == "__main__":
demo = create_interface()
demo.launch() |