PierreBrunelle's picture
Create app.py
89c85fb verified
raw
history blame
25.5 kB
import gradio as gr
import yfinance as yf
import pandas as pd
import numpy as np
from datetime import datetime
import plotly.graph_objects as go
from plotly.subplots import make_subplots
import pixeltable as pxt
from pixeltable.functions import openai
import json
import os
import getpass
from typing import Dict, Any
# Set up OpenAI API key
if 'OPENAI_API_KEY' not in os.environ:
os.environ['OPENAI_API_KEY'] = getpass.getpass('Enter your OpenAI API key: ')
class NumpyEncoder(json.JSONEncoder):
def default(self, obj):
if isinstance(obj, (np.int_, np.intc, np.intp, np.int8,
np.int16, np.int32, np.int64, np.uint8,
np.uint16, np.uint32, np.uint64)):
return int(obj)
elif isinstance(obj, (np.float_, np.float16, np.float32, np.float64)):
return float(obj)
elif isinstance(obj, (np.ndarray,)):
return obj.tolist()
return json.JSONEncoder.default(self, obj)
def safe_json_serialize(obj):
return json.dumps(obj, cls=NumpyEncoder)
def calculate_basic_indicators(data: pd.DataFrame) -> pd.DataFrame:
df = data.copy()
# Moving averages
df['MA20'] = df['Close'].rolling(window=20).mean()
df['MA50'] = df['Close'].rolling(window=50).mean()
df['MA200'] = df['Close'].rolling(window=200).mean()
# RSI
delta = df['Close'].diff()
gain = (delta.where(delta > 0, 0)).rolling(window=14).mean()
loss = (-delta.where(delta < 0, 0)).rolling(window=14).mean()
rs = gain / loss
df['RSI'] = 100 - (100 / (1 + rs))
# MACD
exp1 = df['Close'].ewm(span=12, adjust=False).mean()
exp2 = df['Close'].ewm(span=26, adjust=False).mean()
df['MACD'] = exp1 - exp2
df['MACD_Signal'] = df['MACD'].ewm(span=9, adjust=False).mean()
return df.ffill().bfill()
# Also update the system prompt in generate_analysis_prompt to ensure structured output:
@pxt.udf
def generate_analysis_prompt(data: str, analysis_type: str) -> list[dict]:
"""Generate a structured prompt for AI analysis"""
system_prompt = '''You are a financial analyst providing market analysis. Structure your response using EXACTLY the following format and sections:
SUMMARY
Provide a clear 2-3 sentence executive summary of your analysis.
TECHNICAL ANALYSIS
β€’ Moving Averages: Analyze trends using MA20, MA50, and MA200
β€’ RSI Analysis: Current RSI level and implications
β€’ MACD Analysis: MACD trends and signals
β€’ Volume Analysis: Notable volume patterns and implications
MARKET CONTEXT
β€’ List 2-3 key market factors affecting the stock
β€’ Include relevant sector/industry context
β€’ Note any significant recent developments
RISKS
β€’ Risk 1: [Specific risk and brief explanation]
β€’ Risk 2: [Specific risk and brief explanation]
β€’ Risk 3: [Specific risk and brief explanation]
OPPORTUNITIES
β€’ Opportunity 1: [Specific opportunity and brief explanation]
β€’ Opportunity 2: [Specific opportunity and brief explanation]
β€’ Opportunity 3: [Specific opportunity and brief explanation]
RECOMMENDATION
Provide a clear, actionable investment recommendation based on the analysis above.'''
return [
{'role': 'system', 'content': system_prompt},
{'role': 'user', 'content': f'Analyze this market data for {analysis_type} analysis:\n{data}'}
]
def parse_analysis_response(response: str) -> Dict[str, str]:
"""Parse the structured AI response into sections with support for markdown formatting"""
sections = {
'SUMMARY': None,
'TECHNICAL ANALYSIS': None,
'MARKET CONTEXT': None,
'RISKS': None,
'OPPORTUNITIES': None,
'RECOMMENDATION': None
}
current_section = None
buffer = []
if not response or not response.strip():
return {k: "Analysis not available" for k in sections.keys()}
for line in response.split('\n'):
line = line.strip()
# Check if this line is a section header (now handling markdown formatting)
matched_section = None
for section in sections.keys():
# Remove asterisks and check for exact match
cleaned_line = line.replace('*', '').strip()
if cleaned_line == section:
matched_section = section
break
if matched_section:
# Save previous section if exists
if current_section and buffer:
sections[current_section] = '\n'.join(buffer).strip()
current_section = matched_section
buffer = []
elif current_section and line:
# Clean up markdown formatting in content
cleaned_content = line.replace('*', '').strip()
if cleaned_content: # Only add non-empty lines
buffer.append(cleaned_content)
# Save the last section
if current_section and buffer:
sections[current_section] = '\n'.join(buffer).strip()
# Clean up sections and provide meaningful defaults
section_messages = {
'SUMMARY': 'Market analysis summary not available',
'TECHNICAL ANALYSIS': 'Technical analysis not available',
'MARKET CONTEXT': 'Market context information not available',
'RISKS': 'Risk assessment not available',
'OPPORTUNITIES': 'Opportunity analysis not available',
'RECOMMENDATION': 'Investment recommendation not available'
}
# Only use default messages if section is truly empty
for key in sections:
if sections[key] is None or not sections[key].strip():
sections[key] = section_messages[key]
return sections
def create_visualization(data: pd.DataFrame, technical_depth: str) -> go.Figure:
fig = make_subplots(
rows=3 if technical_depth == 'advanced' else 2,
cols=1,
shared_xaxes=True,
vertical_spacing=0.05,
subplot_titles=('Price & Moving Averages', 'Volume', 'RSI' if technical_depth == 'advanced' else None)
)
# Price candlesticks with improved styling
fig.add_trace(
go.Candlestick(
x=data.index,
open=data['Open'],
high=data['High'],
low=data['Low'],
close=data['Close'],
name='Price',
increasing_line_color='#26A69A',
decreasing_line_color='#EF5350'
),
row=1, col=1
)
# Moving averages with distinct colors
colors = {'MA20': '#1E88E5', 'MA50': '#FFC107', 'MA200': '#7B1FA2'}
for ma, color in colors.items():
fig.add_trace(
go.Scatter(
x=data.index,
y=data[ma],
name=ma,
line=dict(color=color, width=1.5)
),
row=1, col=1
)
# Volume with color based on price change
colors = ['#26A69A' if close >= open_price else '#EF5350'
for close, open_price in zip(data['Close'].values, data['Open'].values)]
fig.add_trace(
go.Bar(
x=data.index,
y=data['Volume'],
name='Volume',
marker_color=colors
),
row=2, col=1
)
if technical_depth == 'advanced':
fig.add_trace(
go.Scatter(
x=data.index,
y=data['RSI'],
name='RSI',
line=dict(color='#7C4DFF', width=1.5)
),
row=3, col=1
)
# Add RSI reference lines
fig.add_hline(y=70, line_dash="dash", line_color="red", row=3, col=1)
fig.add_hline(y=30, line_dash="dash", line_color="green", row=3, col=1)
fig.update_layout(
height=800,
template='plotly_white',
showlegend=True,
legend=dict(
orientation="h",
yanchor="bottom",
y=1.02,
xanchor="right",
x=1
)
)
# Update y-axes labels
fig.update_yaxes(title_text="Price", row=1, col=1)
fig.update_yaxes(title_text="Volume", row=2, col=1)
if technical_depth == 'advanced':
fig.update_yaxes(title_text="RSI", row=3, col=1)
return fig
def process_outputs(ticker_symbol, analysis_type, time_horizon, risk_tolerance,
investment_style, technical_depth, include_market_context=True,
max_positions=3):
try:
# Initialize Pixeltable
pxt.drop_dir('financial_analysis', force=True)
pxt.create_dir('financial_analysis')
data_table = pxt.create_table(
'financial_analysis.stock_data',
{
'ticker': pxt.StringType(),
'data': pxt.StringType(),
'timestamp': pxt.TimestampType()
}
)
# Fetch and process data
stock = yf.Ticker(ticker_symbol.strip().upper())
market_data = stock.history(period='1y')
if market_data.empty:
raise ValueError("No data found for the specified ticker symbol.")
technical_data = calculate_basic_indicators(market_data)
market_data_json = technical_data.to_json(date_format='iso')
# Store data and generate analysis
data_table.insert([{
'ticker': ticker_symbol.upper(),
'data': market_data_json,
'timestamp': datetime.now()
}])
data_table['prompt'] = generate_analysis_prompt(data_table.data, analysis_type)
data_table['analysis'] = openai.chat_completions(
messages=data_table.prompt,
model='gpt-4o-mini-2024-07-18',
temperature=0.7,
max_tokens=1000
)
# Process the analysis with better error handling
try:
analysis_text = data_table.select(
analysis=data_table.analysis.choices[0].message.content
).tail(1)['analysis'][0]
parsed_analysis = parse_analysis_response(analysis_text)
except Exception as analysis_error:
print(f"Analysis error: {str(analysis_error)}")
parsed_analysis = parse_analysis_response("") # This will return default messages
# Prepare company info with proper JSON formatting
company_info_data = {
'Name': str(stock.info.get('longName', 'N/A')),
'Sector': str(stock.info.get('sector', 'N/A')),
'Industry': str(stock.info.get('industry', 'N/A')),
'Exchange': str(stock.info.get('exchange', 'N/A'))
}
raw_llm_output = ""
try:
raw_llm_output = data_table.select(
analysis=data_table.analysis.choices[0].message.content
).tail(1)['analysis'][0]
parsed_analysis = parse_analysis_response(raw_llm_output)
except Exception as analysis_error:
print(f"Analysis error: {str(analysis_error)}")
parsed_analysis = parse_analysis_response("")
raw_llm_output = f"Error processing analysis: {str(analysis_error)}"
# Prepare market stats with proper number formatting
try:
current_price = float(technical_data['Close'].iloc[-1])
previous_price = float(technical_data['Close'].iloc[-2])
daily_change = float((current_price / previous_price - 1) * 100)
volume = int(technical_data['Volume'].iloc[-1])
rsi = float(technical_data['RSI'].iloc[-1])
except (IndexError, KeyError, TypeError):
current_price = daily_change = volume = rsi = 0
market_stats_data = {
'Current Price': f"${current_price:.2f}",
'Daily Change': f"{daily_change:.2f}%",
'Volume': f"{volume:,}",
'RSI': f"{rsi:.2f}"
}
# Add timestamp to technical data
technical_data_with_time = technical_data.reset_index()
technical_data_with_time['Date'] = technical_data_with_time['Date'].dt.strftime('%Y-%m-%d %H:%M:%S')
# Create visualization
plot = create_visualization(technical_data, technical_depth)
return (
json.dumps(company_info_data),
json.dumps(market_stats_data),
plot,
parsed_analysis['SUMMARY'],
parsed_analysis['TECHNICAL ANALYSIS'],
parsed_analysis['MARKET CONTEXT'],
parsed_analysis['RISKS'],
parsed_analysis['OPPORTUNITIES'],
parsed_analysis['RECOMMENDATION'],
technical_data_with_time,
raw_llm_output # Add raw output to return values
)
except Exception as e:
error_msg = f"Error processing data: {str(e)}"
empty_json = json.dumps({})
no_data_msg = "Analysis not available due to data processing error"
empty_df = pd.DataFrame()
return (
empty_json,
empty_json,
None,
no_data_msg,
no_data_msg,
no_data_msg,
no_data_msg,
no_data_msg,
no_data_msg,
empty_df,
f"Error occurred: {str(e)}" # Add error message to raw output
)
def create_interface() -> gr.Blocks:
"""Create the production-ready Gradio interface"""
with gr.Blocks(theme=gr.themes.Base()) as demo:
# Header
gr.Markdown(
"""
# πŸ“ˆ AI Financial Analysis Platform
AI-powered market analysis and technical indicators. The creators and operators of this tool are not responsible for any financial losses or decisions made based on this analysis.
"""
)
# Information Accordions
with gr.Row():
with gr.Column():
with gr.Accordion("🎯 What does it do?", open=False):
gr.Markdown("""
This platform provides comprehensive financial analysis tools:
1. πŸ“Š **Technical Analysis**: Advanced indicators, e.g. RSI, and MACD
2. πŸ€– **AI-Powered Insights**: Intelligent market analysis/recommendations
3. πŸ“ˆ **Interactive Charts**: Visual representation of movements/indicators
4. πŸ’‘ **Investment Context**: Market conditions and sector analysis
5. ⚑ **Real-time Data**: Up-to-date information through Yahoo Finance
6. 🎯 **Personalized Analysis**: Tailored to your style/risk tolerance
""")
with gr.Column():
with gr.Accordion("πŸ› οΈ How does it work?", open=False):
gr.Markdown("""
The platform leverages several advanced technologies:
1. πŸ“¦ **Data Processing**: Pixeltable manages and orchestrate data
2. πŸ” **Technical Indicators**: Custom algorithms calculate market metrics
3. πŸ€– **AI Analysis**: Advanced language models provide market insights
4. πŸ“Š **Visualization**: Interactive charts using Plotly
5. πŸ”„ **Real-time Updates**: Direct connection to market data feeds
6. πŸ’Ύ **Data Persistence**: Reliable storage and retrieval of insights
""")
# Disclaimer
gr.HTML(
"""
<div style="background-color: #FFF4E5; border: 1px solid #FFE0B2; color: #663C00; border-radius: 8px; padding: 15px; margin: 15px 0;">
<strong>⚠️ Disclaimer:</strong>
<p style="margin: 8px 0;">
This tool provides financial analysis for informational purposes only and should not be considered as financial advice.
Before making any investment decisions, please:
</p>
<ul style="margin: 8px 0;">
<li>Consult with qualified financial advisors</li>
<li>Conduct your own research</li>
<li>Consider your personal financial situation</li>
<li>Be aware that past performance does not guarantee future results</li>
<li>Understand that all investments carry risk</li>
</ul>
</div>
"""
)
with gr.Row():
# Left sidebar for inputs (reduced width)
with gr.Column(scale=1):
with gr.Row():
gr.Markdown("### πŸ“Š Analysis Parameters")
with gr.Row():
ticker_input = gr.Textbox(
label="Stock Ticker",
placeholder="e.g., AAPL",
max_lines=1
)
analysis_type = gr.Radio(
choices=['comprehensive', 'quantitative', 'technical'],
label="Analysis Type",
value='comprehensive'
)
technical_depth = gr.Radio(
choices=['basic', 'advanced'],
label="Technical Depth",
value='advanced'
)
with gr.Row():
gr.Markdown("### 🎯 Investment Profile")
with gr.Row():
time_horizon = gr.Radio(
choices=['short', 'medium', 'long'],
label="Time Horizon",
value='medium'
)
risk_tolerance = gr.Radio(
choices=['conservative', 'moderate', 'aggressive'],
label="Risk Tolerance",
value='moderate'
)
investment_style = gr.Dropdown(
choices=['value', 'growth', 'momentum', 'balanced', 'income'],
label="Investment Style",
value='balanced'
)
analyze_btn = gr.Button("πŸ“Š Analyze Stock", variant="primary")
with gr.Row():
with gr.Column(scale=3):
with gr.Tabs() as tabs:
with gr.TabItem("πŸ“Š Analysis Dashboard"):
# Top row with company info and market stats
with gr.Row(equal_height=True):
with gr.Column(scale=1):
company_info = gr.JSON(
label="Company Information",
height=150
)
with gr.Column(scale=1):
market_stats = gr.JSON(
label="Market Statistics",
height=150
)
with gr.TabItem("πŸ“‘ Historical Data"):
technical_data = gr.DataFrame(
headers=["Date", "Open", "High", "Low", "Close",
"Volume", "MA20", "MA50", "MA200", "RSI",
"MACD", "MACD_Signal"],
)
with gr.TabItem("πŸ” Debug View"):
raw_output = gr.Textbox(
label="Raw LLM Output",
lines=10,
max_lines=20,
show_label=True,
interactive=False
)
gr.Markdown("""
### Debug Information
This tab shows the raw output from the language model before parsing.
Use this to diagnose any issues with the analysis display.
""")
# Technical analysis chart
with gr.Row():
with gr.Column(scale=1):
with gr.Row():
gr.Markdown("### πŸ“ˆ Technical Analysis Chart")
with gr.Row():
plot_output = gr.Plot()
# AI Analysis section with better layout
with gr.Row():
with gr.Column(scale=2):
with gr.Row():
gr.Markdown("### πŸ€– AI Analysis")
# Summary at the top
with gr.Row():
summary = gr.Textbox(
label="Executive Summary",
lines=3,
max_lines=5,
show_label=True
)
# Main analysis sections
with gr.Row():
with gr.Column(scale=1):
tech_analysis = gr.Textbox(
label="Technical Analysis",
lines=8,
max_lines=10,
show_label=True
)
market_context = gr.Textbox(
label="Market Context",
lines=4,
max_lines=6,
show_label=True
)
with gr.Column(scale=1):
risks = gr.Textbox(
label="Key Risks",
lines=5,
max_lines=7,
show_label=True
)
opportunities = gr.Textbox(
label="Key Opportunities",
lines=5,
max_lines=7,
show_label=True
)
# Recommendation at the bottom
with gr.Row():
recommendation = gr.Textbox(
label="Investment Recommendation",
lines=3,
max_lines=5,
show_label=True
)
# Examples section at the bottom
gr.Examples(
examples=[
["AAPL", "comprehensive", "medium", "moderate", "balanced", "advanced"],
["MSFT", "technical", "short", "aggressive", "momentum", "basic"],
["GOOGL", "quantitative", "long", "conservative", "value", "advanced"]
],
inputs=[
ticker_input, analysis_type, time_horizon, risk_tolerance,
investment_style, technical_depth
]
)
# Footer
gr.HTML(
"""
<div style="margin-top: 2rem; padding-top: 1rem; border-top: 1px solid #e5e7eb;">
<div style="display: flex; justify-content: space-between; align-items: center; flex-wrap: wrap; gap: 1rem;">
<div style="flex: 1;">
<h4 style="margin: 0; color: #374151;">πŸš€ Built with Pixeltable</h4>
<p style="margin: 0.5rem 0; color: #6b7280;">
Open Source AI Data infrastructure for building intelligent applications.
</p>
</div>
<div style="flex: 1;">
<h4 style="margin: 0; color: #374151;">πŸ”— Resources</h4>
<div style="display: flex; gap: 1.5rem; margin-top: 0.5rem;">
<a href="https://github.com/pixeltable/pixeltable" target="_blank" style="color: #4F46E5; text-decoration: none; display: flex; align-items: center; gap: 0.25rem;">
πŸ’» GitHub
</a>
<a href="https://docs.pixeltable.com" target="_blank" style="color: #4F46E5; text-decoration: none; display: flex; align-items: center; gap: 0.25rem;">
πŸ“š Documentation
</a>
<a href="https://huggingface.co/Pixeltable" target="_blank" style="color: #4F46E5; text-decoration: none; display: flex; align-items: center; gap: 0.25rem;">
πŸ€— Hugging Face
</a>
</div>
</div>
</div>
<p style="margin: 1rem 0 0; text-align: center; color: #9CA3AF; font-size: 0.875rem;">
Β© 2024 AI Financial Analysis Platform powered by Pixeltable.
This work is licensed under the Apache License 2.0.
</p>
</div>
"""
)
analyze_btn.click(
process_outputs,
inputs=[
ticker_input, analysis_type, time_horizon, risk_tolerance,
investment_style, technical_depth
],
outputs=[
company_info, market_stats, plot_output,
summary, tech_analysis, market_context,
risks, opportunities, recommendation,
technical_data, raw_output # Add raw_output to outputs
]
)
return demo
if __name__ == "__main__":
demo = create_interface()
demo.launch()