File size: 25,503 Bytes
89c85fb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 |
import gradio as gr
import yfinance as yf
import pandas as pd
import numpy as np
from datetime import datetime
import plotly.graph_objects as go
from plotly.subplots import make_subplots
import pixeltable as pxt
from pixeltable.functions import openai
import json
import os
import getpass
from typing import Dict, Any
# Set up OpenAI API key
if 'OPENAI_API_KEY' not in os.environ:
os.environ['OPENAI_API_KEY'] = getpass.getpass('Enter your OpenAI API key: ')
class NumpyEncoder(json.JSONEncoder):
def default(self, obj):
if isinstance(obj, (np.int_, np.intc, np.intp, np.int8,
np.int16, np.int32, np.int64, np.uint8,
np.uint16, np.uint32, np.uint64)):
return int(obj)
elif isinstance(obj, (np.float_, np.float16, np.float32, np.float64)):
return float(obj)
elif isinstance(obj, (np.ndarray,)):
return obj.tolist()
return json.JSONEncoder.default(self, obj)
def safe_json_serialize(obj):
return json.dumps(obj, cls=NumpyEncoder)
def calculate_basic_indicators(data: pd.DataFrame) -> pd.DataFrame:
df = data.copy()
# Moving averages
df['MA20'] = df['Close'].rolling(window=20).mean()
df['MA50'] = df['Close'].rolling(window=50).mean()
df['MA200'] = df['Close'].rolling(window=200).mean()
# RSI
delta = df['Close'].diff()
gain = (delta.where(delta > 0, 0)).rolling(window=14).mean()
loss = (-delta.where(delta < 0, 0)).rolling(window=14).mean()
rs = gain / loss
df['RSI'] = 100 - (100 / (1 + rs))
# MACD
exp1 = df['Close'].ewm(span=12, adjust=False).mean()
exp2 = df['Close'].ewm(span=26, adjust=False).mean()
df['MACD'] = exp1 - exp2
df['MACD_Signal'] = df['MACD'].ewm(span=9, adjust=False).mean()
return df.ffill().bfill()
# Also update the system prompt in generate_analysis_prompt to ensure structured output:
@pxt.udf
def generate_analysis_prompt(data: str, analysis_type: str) -> list[dict]:
"""Generate a structured prompt for AI analysis"""
system_prompt = '''You are a financial analyst providing market analysis. Structure your response using EXACTLY the following format and sections:
SUMMARY
Provide a clear 2-3 sentence executive summary of your analysis.
TECHNICAL ANALYSIS
β’ Moving Averages: Analyze trends using MA20, MA50, and MA200
β’ RSI Analysis: Current RSI level and implications
β’ MACD Analysis: MACD trends and signals
β’ Volume Analysis: Notable volume patterns and implications
MARKET CONTEXT
β’ List 2-3 key market factors affecting the stock
β’ Include relevant sector/industry context
β’ Note any significant recent developments
RISKS
β’ Risk 1: [Specific risk and brief explanation]
β’ Risk 2: [Specific risk and brief explanation]
β’ Risk 3: [Specific risk and brief explanation]
OPPORTUNITIES
β’ Opportunity 1: [Specific opportunity and brief explanation]
β’ Opportunity 2: [Specific opportunity and brief explanation]
β’ Opportunity 3: [Specific opportunity and brief explanation]
RECOMMENDATION
Provide a clear, actionable investment recommendation based on the analysis above.'''
return [
{'role': 'system', 'content': system_prompt},
{'role': 'user', 'content': f'Analyze this market data for {analysis_type} analysis:\n{data}'}
]
def parse_analysis_response(response: str) -> Dict[str, str]:
"""Parse the structured AI response into sections with support for markdown formatting"""
sections = {
'SUMMARY': None,
'TECHNICAL ANALYSIS': None,
'MARKET CONTEXT': None,
'RISKS': None,
'OPPORTUNITIES': None,
'RECOMMENDATION': None
}
current_section = None
buffer = []
if not response or not response.strip():
return {k: "Analysis not available" for k in sections.keys()}
for line in response.split('\n'):
line = line.strip()
# Check if this line is a section header (now handling markdown formatting)
matched_section = None
for section in sections.keys():
# Remove asterisks and check for exact match
cleaned_line = line.replace('*', '').strip()
if cleaned_line == section:
matched_section = section
break
if matched_section:
# Save previous section if exists
if current_section and buffer:
sections[current_section] = '\n'.join(buffer).strip()
current_section = matched_section
buffer = []
elif current_section and line:
# Clean up markdown formatting in content
cleaned_content = line.replace('*', '').strip()
if cleaned_content: # Only add non-empty lines
buffer.append(cleaned_content)
# Save the last section
if current_section and buffer:
sections[current_section] = '\n'.join(buffer).strip()
# Clean up sections and provide meaningful defaults
section_messages = {
'SUMMARY': 'Market analysis summary not available',
'TECHNICAL ANALYSIS': 'Technical analysis not available',
'MARKET CONTEXT': 'Market context information not available',
'RISKS': 'Risk assessment not available',
'OPPORTUNITIES': 'Opportunity analysis not available',
'RECOMMENDATION': 'Investment recommendation not available'
}
# Only use default messages if section is truly empty
for key in sections:
if sections[key] is None or not sections[key].strip():
sections[key] = section_messages[key]
return sections
def create_visualization(data: pd.DataFrame, technical_depth: str) -> go.Figure:
fig = make_subplots(
rows=3 if technical_depth == 'advanced' else 2,
cols=1,
shared_xaxes=True,
vertical_spacing=0.05,
subplot_titles=('Price & Moving Averages', 'Volume', 'RSI' if technical_depth == 'advanced' else None)
)
# Price candlesticks with improved styling
fig.add_trace(
go.Candlestick(
x=data.index,
open=data['Open'],
high=data['High'],
low=data['Low'],
close=data['Close'],
name='Price',
increasing_line_color='#26A69A',
decreasing_line_color='#EF5350'
),
row=1, col=1
)
# Moving averages with distinct colors
colors = {'MA20': '#1E88E5', 'MA50': '#FFC107', 'MA200': '#7B1FA2'}
for ma, color in colors.items():
fig.add_trace(
go.Scatter(
x=data.index,
y=data[ma],
name=ma,
line=dict(color=color, width=1.5)
),
row=1, col=1
)
# Volume with color based on price change
colors = ['#26A69A' if close >= open_price else '#EF5350'
for close, open_price in zip(data['Close'].values, data['Open'].values)]
fig.add_trace(
go.Bar(
x=data.index,
y=data['Volume'],
name='Volume',
marker_color=colors
),
row=2, col=1
)
if technical_depth == 'advanced':
fig.add_trace(
go.Scatter(
x=data.index,
y=data['RSI'],
name='RSI',
line=dict(color='#7C4DFF', width=1.5)
),
row=3, col=1
)
# Add RSI reference lines
fig.add_hline(y=70, line_dash="dash", line_color="red", row=3, col=1)
fig.add_hline(y=30, line_dash="dash", line_color="green", row=3, col=1)
fig.update_layout(
height=800,
template='plotly_white',
showlegend=True,
legend=dict(
orientation="h",
yanchor="bottom",
y=1.02,
xanchor="right",
x=1
)
)
# Update y-axes labels
fig.update_yaxes(title_text="Price", row=1, col=1)
fig.update_yaxes(title_text="Volume", row=2, col=1)
if technical_depth == 'advanced':
fig.update_yaxes(title_text="RSI", row=3, col=1)
return fig
def process_outputs(ticker_symbol, analysis_type, time_horizon, risk_tolerance,
investment_style, technical_depth, include_market_context=True,
max_positions=3):
try:
# Initialize Pixeltable
pxt.drop_dir('financial_analysis', force=True)
pxt.create_dir('financial_analysis')
data_table = pxt.create_table(
'financial_analysis.stock_data',
{
'ticker': pxt.StringType(),
'data': pxt.StringType(),
'timestamp': pxt.TimestampType()
}
)
# Fetch and process data
stock = yf.Ticker(ticker_symbol.strip().upper())
market_data = stock.history(period='1y')
if market_data.empty:
raise ValueError("No data found for the specified ticker symbol.")
technical_data = calculate_basic_indicators(market_data)
market_data_json = technical_data.to_json(date_format='iso')
# Store data and generate analysis
data_table.insert([{
'ticker': ticker_symbol.upper(),
'data': market_data_json,
'timestamp': datetime.now()
}])
data_table['prompt'] = generate_analysis_prompt(data_table.data, analysis_type)
data_table['analysis'] = openai.chat_completions(
messages=data_table.prompt,
model='gpt-4o-mini-2024-07-18',
temperature=0.7,
max_tokens=1000
)
# Process the analysis with better error handling
try:
analysis_text = data_table.select(
analysis=data_table.analysis.choices[0].message.content
).tail(1)['analysis'][0]
parsed_analysis = parse_analysis_response(analysis_text)
except Exception as analysis_error:
print(f"Analysis error: {str(analysis_error)}")
parsed_analysis = parse_analysis_response("") # This will return default messages
# Prepare company info with proper JSON formatting
company_info_data = {
'Name': str(stock.info.get('longName', 'N/A')),
'Sector': str(stock.info.get('sector', 'N/A')),
'Industry': str(stock.info.get('industry', 'N/A')),
'Exchange': str(stock.info.get('exchange', 'N/A'))
}
raw_llm_output = ""
try:
raw_llm_output = data_table.select(
analysis=data_table.analysis.choices[0].message.content
).tail(1)['analysis'][0]
parsed_analysis = parse_analysis_response(raw_llm_output)
except Exception as analysis_error:
print(f"Analysis error: {str(analysis_error)}")
parsed_analysis = parse_analysis_response("")
raw_llm_output = f"Error processing analysis: {str(analysis_error)}"
# Prepare market stats with proper number formatting
try:
current_price = float(technical_data['Close'].iloc[-1])
previous_price = float(technical_data['Close'].iloc[-2])
daily_change = float((current_price / previous_price - 1) * 100)
volume = int(technical_data['Volume'].iloc[-1])
rsi = float(technical_data['RSI'].iloc[-1])
except (IndexError, KeyError, TypeError):
current_price = daily_change = volume = rsi = 0
market_stats_data = {
'Current Price': f"${current_price:.2f}",
'Daily Change': f"{daily_change:.2f}%",
'Volume': f"{volume:,}",
'RSI': f"{rsi:.2f}"
}
# Add timestamp to technical data
technical_data_with_time = technical_data.reset_index()
technical_data_with_time['Date'] = technical_data_with_time['Date'].dt.strftime('%Y-%m-%d %H:%M:%S')
# Create visualization
plot = create_visualization(technical_data, technical_depth)
return (
json.dumps(company_info_data),
json.dumps(market_stats_data),
plot,
parsed_analysis['SUMMARY'],
parsed_analysis['TECHNICAL ANALYSIS'],
parsed_analysis['MARKET CONTEXT'],
parsed_analysis['RISKS'],
parsed_analysis['OPPORTUNITIES'],
parsed_analysis['RECOMMENDATION'],
technical_data_with_time,
raw_llm_output # Add raw output to return values
)
except Exception as e:
error_msg = f"Error processing data: {str(e)}"
empty_json = json.dumps({})
no_data_msg = "Analysis not available due to data processing error"
empty_df = pd.DataFrame()
return (
empty_json,
empty_json,
None,
no_data_msg,
no_data_msg,
no_data_msg,
no_data_msg,
no_data_msg,
no_data_msg,
empty_df,
f"Error occurred: {str(e)}" # Add error message to raw output
)
def create_interface() -> gr.Blocks:
"""Create the production-ready Gradio interface"""
with gr.Blocks(theme=gr.themes.Base()) as demo:
# Header
gr.Markdown(
"""
# π AI Financial Analysis Platform
AI-powered market analysis and technical indicators. The creators and operators of this tool are not responsible for any financial losses or decisions made based on this analysis.
"""
)
# Information Accordions
with gr.Row():
with gr.Column():
with gr.Accordion("π― What does it do?", open=False):
gr.Markdown("""
This platform provides comprehensive financial analysis tools:
1. π **Technical Analysis**: Advanced indicators, e.g. RSI, and MACD
2. π€ **AI-Powered Insights**: Intelligent market analysis/recommendations
3. π **Interactive Charts**: Visual representation of movements/indicators
4. π‘ **Investment Context**: Market conditions and sector analysis
5. β‘ **Real-time Data**: Up-to-date information through Yahoo Finance
6. π― **Personalized Analysis**: Tailored to your style/risk tolerance
""")
with gr.Column():
with gr.Accordion("π οΈ How does it work?", open=False):
gr.Markdown("""
The platform leverages several advanced technologies:
1. π¦ **Data Processing**: Pixeltable manages and orchestrate data
2. π **Technical Indicators**: Custom algorithms calculate market metrics
3. π€ **AI Analysis**: Advanced language models provide market insights
4. π **Visualization**: Interactive charts using Plotly
5. π **Real-time Updates**: Direct connection to market data feeds
6. πΎ **Data Persistence**: Reliable storage and retrieval of insights
""")
# Disclaimer
gr.HTML(
"""
<div style="background-color: #FFF4E5; border: 1px solid #FFE0B2; color: #663C00; border-radius: 8px; padding: 15px; margin: 15px 0;">
<strong>β οΈ Disclaimer:</strong>
<p style="margin: 8px 0;">
This tool provides financial analysis for informational purposes only and should not be considered as financial advice.
Before making any investment decisions, please:
</p>
<ul style="margin: 8px 0;">
<li>Consult with qualified financial advisors</li>
<li>Conduct your own research</li>
<li>Consider your personal financial situation</li>
<li>Be aware that past performance does not guarantee future results</li>
<li>Understand that all investments carry risk</li>
</ul>
</div>
"""
)
with gr.Row():
# Left sidebar for inputs (reduced width)
with gr.Column(scale=1):
with gr.Row():
gr.Markdown("### π Analysis Parameters")
with gr.Row():
ticker_input = gr.Textbox(
label="Stock Ticker",
placeholder="e.g., AAPL",
max_lines=1
)
analysis_type = gr.Radio(
choices=['comprehensive', 'quantitative', 'technical'],
label="Analysis Type",
value='comprehensive'
)
technical_depth = gr.Radio(
choices=['basic', 'advanced'],
label="Technical Depth",
value='advanced'
)
with gr.Row():
gr.Markdown("### π― Investment Profile")
with gr.Row():
time_horizon = gr.Radio(
choices=['short', 'medium', 'long'],
label="Time Horizon",
value='medium'
)
risk_tolerance = gr.Radio(
choices=['conservative', 'moderate', 'aggressive'],
label="Risk Tolerance",
value='moderate'
)
investment_style = gr.Dropdown(
choices=['value', 'growth', 'momentum', 'balanced', 'income'],
label="Investment Style",
value='balanced'
)
analyze_btn = gr.Button("π Analyze Stock", variant="primary")
with gr.Row():
with gr.Column(scale=3):
with gr.Tabs() as tabs:
with gr.TabItem("π Analysis Dashboard"):
# Top row with company info and market stats
with gr.Row(equal_height=True):
with gr.Column(scale=1):
company_info = gr.JSON(
label="Company Information",
height=150
)
with gr.Column(scale=1):
market_stats = gr.JSON(
label="Market Statistics",
height=150
)
with gr.TabItem("π Historical Data"):
technical_data = gr.DataFrame(
headers=["Date", "Open", "High", "Low", "Close",
"Volume", "MA20", "MA50", "MA200", "RSI",
"MACD", "MACD_Signal"],
)
with gr.TabItem("π Debug View"):
raw_output = gr.Textbox(
label="Raw LLM Output",
lines=10,
max_lines=20,
show_label=True,
interactive=False
)
gr.Markdown("""
### Debug Information
This tab shows the raw output from the language model before parsing.
Use this to diagnose any issues with the analysis display.
""")
# Technical analysis chart
with gr.Row():
with gr.Column(scale=1):
with gr.Row():
gr.Markdown("### π Technical Analysis Chart")
with gr.Row():
plot_output = gr.Plot()
# AI Analysis section with better layout
with gr.Row():
with gr.Column(scale=2):
with gr.Row():
gr.Markdown("### π€ AI Analysis")
# Summary at the top
with gr.Row():
summary = gr.Textbox(
label="Executive Summary",
lines=3,
max_lines=5,
show_label=True
)
# Main analysis sections
with gr.Row():
with gr.Column(scale=1):
tech_analysis = gr.Textbox(
label="Technical Analysis",
lines=8,
max_lines=10,
show_label=True
)
market_context = gr.Textbox(
label="Market Context",
lines=4,
max_lines=6,
show_label=True
)
with gr.Column(scale=1):
risks = gr.Textbox(
label="Key Risks",
lines=5,
max_lines=7,
show_label=True
)
opportunities = gr.Textbox(
label="Key Opportunities",
lines=5,
max_lines=7,
show_label=True
)
# Recommendation at the bottom
with gr.Row():
recommendation = gr.Textbox(
label="Investment Recommendation",
lines=3,
max_lines=5,
show_label=True
)
# Examples section at the bottom
gr.Examples(
examples=[
["AAPL", "comprehensive", "medium", "moderate", "balanced", "advanced"],
["MSFT", "technical", "short", "aggressive", "momentum", "basic"],
["GOOGL", "quantitative", "long", "conservative", "value", "advanced"]
],
inputs=[
ticker_input, analysis_type, time_horizon, risk_tolerance,
investment_style, technical_depth
]
)
# Footer
gr.HTML(
"""
<div style="margin-top: 2rem; padding-top: 1rem; border-top: 1px solid #e5e7eb;">
<div style="display: flex; justify-content: space-between; align-items: center; flex-wrap: wrap; gap: 1rem;">
<div style="flex: 1;">
<h4 style="margin: 0; color: #374151;">π Built with Pixeltable</h4>
<p style="margin: 0.5rem 0; color: #6b7280;">
Open Source AI Data infrastructure for building intelligent applications.
</p>
</div>
<div style="flex: 1;">
<h4 style="margin: 0; color: #374151;">π Resources</h4>
<div style="display: flex; gap: 1.5rem; margin-top: 0.5rem;">
<a href="https://github.com/pixeltable/pixeltable" target="_blank" style="color: #4F46E5; text-decoration: none; display: flex; align-items: center; gap: 0.25rem;">
π» GitHub
</a>
<a href="https://docs.pixeltable.com" target="_blank" style="color: #4F46E5; text-decoration: none; display: flex; align-items: center; gap: 0.25rem;">
π Documentation
</a>
<a href="https://huggingface.co/Pixeltable" target="_blank" style="color: #4F46E5; text-decoration: none; display: flex; align-items: center; gap: 0.25rem;">
π€ Hugging Face
</a>
</div>
</div>
</div>
<p style="margin: 1rem 0 0; text-align: center; color: #9CA3AF; font-size: 0.875rem;">
Β© 2024 AI Financial Analysis Platform powered by Pixeltable.
This work is licensed under the Apache License 2.0.
</p>
</div>
"""
)
analyze_btn.click(
process_outputs,
inputs=[
ticker_input, analysis_type, time_horizon, risk_tolerance,
investment_style, technical_depth
],
outputs=[
company_info, market_stats, plot_output,
summary, tech_analysis, market_context,
risks, opportunities, recommendation,
technical_data, raw_output # Add raw_output to outputs
]
)
return demo
if __name__ == "__main__":
demo = create_interface()
demo.launch() |