Spaces:
Running
on
Zero
Running
on
Zero
File size: 11,305 Bytes
87a6af3 e296a32 1c821f2 e296a32 1c821f2 f4e353b bc4fdd8 5e04e65 13a0969 49b23e6 87a6af3 13a0969 bc4fdd8 13a0969 bf23443 bc4fdd8 bf23443 13a0969 bf23443 13a0969 c01a610 1c821f2 6f2efc1 1c821f2 eb0d243 49b23e6 eb0d243 1c821f2 bf23443 1c821f2 49b23e6 1c821f2 eb5fdd3 1c821f2 53f8125 3816480 1c821f2 87a6af3 1c821f2 eb5fdd3 49b23e6 1c821f2 7eddf49 1c821f2 7eddf49 1c821f2 5e04e65 1c821f2 eb5fdd3 1c821f2 ca70263 1c821f2 5e04e65 8102b85 1c821f2 32f59ee 6f2efc1 1c821f2 a52231b 1c821f2 6f2efc1 1c821f2 eb0d243 1c821f2 b5cc612 1c821f2 87a6af3 1c821f2 a52231b 1c821f2 e8b9b08 1c821f2 6500322 87a6af3 bb55e87 2bb4b4c 4b5949a 87a6af3 1c821f2 a52231b 1c821f2 a0dd348 1c821f2 a52231b 1c821f2 6f2efc1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 |
import gradio as gr
import cv2
import torch
import numpy as np
import os
from control_cogvideox.cogvideox_transformer_3d import CogVideoXTransformer3DModel
from control_cogvideox.controlnet_cogvideox_transformer_3d import ControlCogVideoXTransformer3DModel
from pipeline_cogvideox_controlnet_5b_i2v_instruction2 import ControlCogVideoXPipeline
from diffusers.utils import export_to_video
from diffusers import AutoencoderKLCogVideoX
from transformers import T5EncoderModel, T5Tokenizer
from diffusers.schedulers import CogVideoXDDIMScheduler
from omegaconf import OmegaConf
from transformers import T5EncoderModel
from einops import rearrange
import decord
from typing import List
from tqdm import tqdm
import PIL
import torch.nn.functional as F
from torchvision import transforms
import spaces
from huggingface_hub import snapshot_download
import time
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
def download_model():
snapshot_download(repo_id="THUDM/CogVideoX-5b-I2V", local_dir="./cogvideox-5b-i2v")
print("Download completed")
def download_model_senorita():
snapshot_download(repo_id="PengWeixuanSZU/Senorita-2M", local_dir="./senorita-2m")
print("Download completed")
download_model()
download_model_senorita()
print("Download successfully!")
def get_prompt(file:str):
with open(file,'r') as f:
a=f.readlines()
return a #a[0]:positive prompt, a[1] negative prompt
def unwarp_model(state_dict):
new_state_dict = {}
for key in state_dict:
new_state_dict[key.split('module.')[1]] = state_dict[key]
return new_state_dict
def init_pipe():
i2v=True
if i2v:
key = "i2v"
else:
key = "t2v"
noise_scheduler = CogVideoXDDIMScheduler(
**OmegaConf.to_container(
OmegaConf.load(f"./cogvideox-5b-{key}/scheduler/scheduler_config.json")
)
)
text_encoder = T5EncoderModel.from_pretrained(f"./cogvideox-5b-{key}/", subfolder="text_encoder", torch_dtype=torch.float16)
vae = AutoencoderKLCogVideoX.from_pretrained(f"./cogvideox-5b-{key}/", subfolder="vae", torch_dtype=torch.float16)
tokenizer = T5Tokenizer.from_pretrained(f"./cogvideox-5b-{key}/tokenizer", torch_dtype=torch.float16)
config = OmegaConf.to_container(
OmegaConf.load(f"./cogvideox-5b-{key}/transformer/config.json")
)
if i2v:
config["in_channels"] = 32
else:
config["in_channels"] = 16
transformer = CogVideoXTransformer3DModel(**config)
control_config = OmegaConf.to_container(
OmegaConf.load(f"./cogvideox-5b-{key}/transformer/config.json")
)
if i2v:
control_config["in_channels"] = 32
else:
control_config["in_channels"] = 16
control_config['num_layers'] = 6
control_config['control_in_channels'] = 16
controlnet_transformer = ControlCogVideoXTransformer3DModel(**control_config)
all_state_dicts = torch.load("./senorita-2m/models_half/ff_controlnet_half.pth", map_location="cpu",weights_only=True)
transformer_state_dict = unwarp_model(all_state_dicts["transformer_state_dict"])
controlnet_transformer_state_dict = unwarp_model(all_state_dicts["controlnet_transformer_state_dict"])
transformer.load_state_dict(transformer_state_dict, strict=True)
controlnet_transformer.load_state_dict(controlnet_transformer_state_dict, strict=True)
transformer = transformer.half()
controlnet_transformer = controlnet_transformer.half()
vae = vae.eval()
text_encoder = text_encoder.eval()
transformer = transformer.eval()
controlnet_transformer = controlnet_transformer.eval()
pipe = ControlCogVideoXPipeline(tokenizer,
text_encoder,
vae,
transformer,
noise_scheduler,
controlnet_transformer,
)
pipe.vae.enable_slicing()
pipe.vae.enable_tiling()
pipe.enable_model_cpu_offload()
return pipe
def inference(source_images,
target_images,
text_prompt, negative_prompt,
pipe, vae, guidance_scale,
h, w, random_seed)->List[PIL.Image.Image]:
torch.manual_seed(random_seed)
pipe.vae.to(DEVICE)
pipe.transformer.to(DEVICE)
pipe.controlnet_transformer.to(DEVICE)
source_pixel_values = source_images/127.5 - 1.0
source_pixel_values = source_pixel_values.to(torch.float16).to(DEVICE)
if target_images is not None:
target_pixel_values = target_images/127.5 - 1.0
target_pixel_values = target_pixel_values.to(torch.float16).to(DEVICE)
bsz,f,h,w,c = source_pixel_values.shape
with torch.no_grad():
source_pixel_values = rearrange(source_pixel_values, "b f w h c -> b c f w h")
source_latents = vae.encode(source_pixel_values).latent_dist.sample()
source_latents = source_latents.to(torch.float16)
source_latents = source_latents * vae.config.scaling_factor
source_latents = rearrange(source_latents, "b c f h w -> b f c h w")
if target_images is not None:
target_pixel_values = rearrange(target_pixel_values, "b f w h c -> b c f w h")
images = target_pixel_values[:,:,:1,...]
image_latents = vae.encode(images).latent_dist.sample()
image_latents = image_latents.to(torch.float16)
image_latents = image_latents * vae.config.scaling_factor
image_latents = rearrange(image_latents, "b c f h w -> b f c h w")
image_latents = torch.cat([image_latents, torch.zeros_like(source_latents)[:,1:]],dim=1)
latents = torch.cat([image_latents, source_latents], dim=2)
else:
image_latents = None
latents = source_latents
a=time.perf_counter()
video = pipe(
prompt = text_prompt,
negative_prompt = negative_prompt,
video_condition = source_latents, # input to controlnet
video_condition2 = image_latents, # concat with latents
height = h,
width = w,
num_frames = f,
num_inference_steps = 20,
interval = 6,
guidance_scale = guidance_scale,
generator = torch.Generator(device=DEVICE).manual_seed(random_seed)
).frames[0]
b=time.perf_counter()
print(f"Denoise 5 steps in {b-a}s")
return video
@spaces.GPU(duration=300)
def process_video(video_file, image_file, positive_prompt, negative_prompt, guidance, random_seed, choice, progress=gr.Progress(track_tqdm=True))->str:
if choice==33:
video_shard=1
elif choice==65:
video_shard=2
pipe=PIPE
h = 448
w = 768
frames_per_shard=33
#get image
image = cv2.imread(image_file)
resized_image = cv2.resize(image, (768, 448))
resized_image = cv2.cvtColor(resized_image, cv2.COLOR_BGR2RGB)
image=torch.from_numpy(resized_image)
#get mp4
vr = decord.VideoReader(video_file)
frames = vr.get_batch(list(range(33))).asnumpy()
_,src_h,src_w,_=frames.shape
resized_frames = [cv2.resize(frame, (768, 448)) for frame in frames]
images=torch.from_numpy(np.array(resized_frames))
target_path="outputvideo"
source_images = images[None,...]
target_images = image[None,None,...]
video:List[PIL.Image.Image]=[]
for i in progress.tqdm(range(video_shard)):
if i>0: #first frame guidence
first_frame=transforms.ToTensor()(video[-1])
first_frame = first_frame*255.0
first_frame = rearrange(first_frame,"c w h -> w h c")
source_images=source_images
target_images=first_frame[None,None,...]
video+=inference(source_images, \
target_images, positive_prompt, \
negative_prompt, pipe, pipe.vae, \
guidance, \
h, w, random_seed)
i+=1
video=[image.resize((int(src_w/src_h*448),448))for image in video]
os.makedirs(f"./{target_path}", exist_ok=True)
output_path:str=f"./{target_path}/output_{video_file[-5]}.mp4"
export_to_video(video, output_path, fps=8)
return output_path
PIPE=init_pipe()
with gr.Blocks() as demo:
gr.Markdown(
"""
# Señorita-2M: A High-Quality Instruction-based Dataset for General Video Editing by Video Specialists
[Paper](https://arxiv.org/abs/2502.06734) | [Code](https://github.com/zibojia/SENORITA) | [Huggingface](https://huggingface.co/datasets/SENORITADATASET/Senorita)
<small>This is the official implementation of Señorita. The original model requires 50 denoising steps to generate a video.
However, due to GPU usage limitations on Hugging Face Spaces, we have reduced the number of denoising steps to 20, which takes about 240s to generate one video.
As a result, the performance may be slightly affected. Thank you for your understanding! This UI is made by [PengWeixuanSZU](https://huggingface.co/PengWeixuanSZU).</small>
"""
)
with gr.Row():
video_input = gr.Video(label="Video input")
image_input = gr.Image(type="filepath", label="First frame guidence")
with gr.Row():
with gr.Column():
positive_prompt = gr.Textbox(label="Positive prompt",value="")
negative_prompt = gr.Textbox(label="Negative prompt",value="")
seed = gr.Slider(minimum=0, maximum=2147483647, step=1, value=0, label="Seed")
guidance_slider = gr.Slider(minimum=1, maximum=10, value=4, label="Guidance")
choice=gr.Radio(choices=[33,65],label="Frame number",value=33)
with gr.Column():
video_output = gr.Video(label="Video output")
with gr.Row():
submit_button = gr.Button("Generate")
submit_button.click(fn=process_video, inputs=[video_input, image_input, positive_prompt, negative_prompt, guidance_slider, seed, choice], outputs=video_output)
with gr.Row():
gr.Examples(
[
["assets/0.mp4","assets/0_edit.png",get_prompt("assets/0.txt")[0],get_prompt("assets/0.txt")[1],4,0,33],
["assets/1.mp4","assets/1_edit.png",get_prompt("assets/1.txt")[0],get_prompt("assets/1.txt")[1],4,0,33],
["assets/2.mp4","assets/2_edit.png",get_prompt("assets/2.txt")[0],get_prompt("assets/2.txt")[1],4,0,33],
["assets/3.mp4","assets/3_edit.png",get_prompt("assets/3.txt")[0],get_prompt("assets/3.txt")[1],4,0,33],
["assets/4.mp4","assets/4_edit.png",get_prompt("assets/4.txt")[0],get_prompt("assets/4.txt")[1],4,0,33],
["assets/5.mp4","assets/5_edit.png",get_prompt("assets/5.txt")[0],get_prompt("assets/5.txt")[1],4,0,33],
["assets/6.mp4","assets/6_edit.png",get_prompt("assets/6.txt")[0],get_prompt("assets/6.txt")[1],4,0,33],
["assets/7.mp4","assets/7_edit.png",get_prompt("assets/7.txt")[0],get_prompt("assets/7.txt")[1],4,0,33],
["assets/8.mp4","assets/8_edit.png",get_prompt("assets/8.txt")[0],get_prompt("assets/8.txt")[1],4,0,33]
],
inputs=[video_input, image_input, positive_prompt, negative_prompt, guidance_slider, seed, choice],
outputs=video_output,
fn=process_video,
cache_examples=False
)
demo.queue().launch()
|