Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -48,17 +48,15 @@ def get_prompt(file:str):
|
|
48 |
with open(file,'r') as f:
|
49 |
a=f.readlines()
|
50 |
return a #a[0]:positive prompt, a[1] negative prompt
|
|
|
|
|
|
|
|
|
|
|
51 |
|
52 |
def init_pipe():
|
53 |
-
def unwarp_model(state_dict):
|
54 |
-
new_state_dict = {}
|
55 |
-
for key in state_dict:
|
56 |
-
new_state_dict[key.split('module.')[1]] = state_dict[key]
|
57 |
-
return new_state_dict
|
58 |
|
59 |
i2v=True
|
60 |
-
root_path="./"
|
61 |
-
training_steps=0
|
62 |
|
63 |
if i2v:
|
64 |
key = "i2v"
|
@@ -179,7 +177,7 @@ def inference(source_images,
|
|
179 |
|
180 |
return video
|
181 |
|
182 |
-
def process_video(video_file, image_file, positive_prompt, negative_prompt, guidance, random_seed, choice, progress=
|
183 |
if choice==33:
|
184 |
video_shard=1
|
185 |
elif choice==65:
|
@@ -210,7 +208,7 @@ def process_video(video_file, image_file, positive_prompt, negative_prompt, guid
|
|
210 |
video:List[PIL.Image.Image]=[]
|
211 |
|
212 |
|
213 |
-
for i in tqdm(range(video_shard)):
|
214 |
if i>0: #first frame guidence
|
215 |
first_frame=transforms.ToTensor()(video[-1])
|
216 |
first_frame = first_frame*255.0
|
@@ -281,7 +279,7 @@ with gr.Blocks() as demo:
|
|
281 |
cache_examples=False
|
282 |
)
|
283 |
|
284 |
-
demo.launch()
|
285 |
"""
|
286 |
import gradio as gr
|
287 |
import spaces
|
|
|
48 |
with open(file,'r') as f:
|
49 |
a=f.readlines()
|
50 |
return a #a[0]:positive prompt, a[1] negative prompt
|
51 |
+
def unwarp_model(state_dict):
|
52 |
+
new_state_dict = {}
|
53 |
+
for key in state_dict:
|
54 |
+
new_state_dict[key.split('module.')[1]] = state_dict[key]
|
55 |
+
return new_state_dict
|
56 |
|
57 |
def init_pipe():
|
|
|
|
|
|
|
|
|
|
|
58 |
|
59 |
i2v=True
|
|
|
|
|
60 |
|
61 |
if i2v:
|
62 |
key = "i2v"
|
|
|
177 |
|
178 |
return video
|
179 |
|
180 |
+
def process_video(video_file, image_file, positive_prompt, negative_prompt, guidance, random_seed, choice, progress=gr.Progress(track_tqdm=True))->str:
|
181 |
if choice==33:
|
182 |
video_shard=1
|
183 |
elif choice==65:
|
|
|
208 |
video:List[PIL.Image.Image]=[]
|
209 |
|
210 |
|
211 |
+
for i in progress.tqdm(range(video_shard)):
|
212 |
if i>0: #first frame guidence
|
213 |
first_frame=transforms.ToTensor()(video[-1])
|
214 |
first_frame = first_frame*255.0
|
|
|
279 |
cache_examples=False
|
280 |
)
|
281 |
|
282 |
+
demo.queue().launch()
|
283 |
"""
|
284 |
import gradio as gr
|
285 |
import spaces
|