Spaces:
Sleeping
Sleeping
import cv2 | |
import numpy as np | |
def pixel_to_sqft(pixel_area, resolution_cm=30): | |
area_cm2 = pixel_area * (resolution_cm ** 2) | |
area_m2 = area_cm2 / 10000.0 | |
area_ft2 = area_m2 * 10.7639 | |
return area_ft2 | |
def process_and_overlay_image(original_image, mask_prediction, output_image_path = None, resolution_cm=30): | |
# Load original image | |
# Convert mask prediction to binary mask | |
mask = mask_prediction.astype(np.uint8) * 255 | |
# Find contours in the mask | |
contours, _ = cv2.findContours(mask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE) | |
# List to hold areas in square feet | |
areas_sqft = [] | |
for contour in contours: | |
area_pixels = cv2.contourArea(contour) | |
area_sqft = pixel_to_sqft(area_pixels, resolution_cm) | |
areas_sqft.append(area_sqft) | |
# Draw contours on the original image | |
cv2.drawContours(original_image, [contour], -1, (0, 255, 0), int(0.5)) # Green color for contours | |
# Calculate and draw centroid | |
M = cv2.moments(contour) | |
if M["m00"] != 0: | |
cX = int(M["m10"] / M["m00"]) | |
cY = int(M["m01"] / M["m00"]) | |
else: | |
cX, cY = 0, 0 | |
cv2.putText(original_image, f'{area_sqft:.0f}', (cX, cY), | |
cv2.FONT_HERSHEY_SIMPLEX, 0.5, (255, 0, 0), 1) | |
# Save and display the image with contours | |
#cv2.imwrite(output_image_path, cv2.cvtColor(original_image, cv2.COLOR_BGR2RGB)) | |
# Display the image using matplotlib | |
#return original_image | |
return (cv2.cvtColor(original_image, cv2.COLOR_BGR2RGB)) | |