import cv2 import numpy as np def pixel_to_sqft(pixel_area, resolution_cm=30): area_cm2 = pixel_area * (resolution_cm ** 2) area_m2 = area_cm2 / 10000.0 area_ft2 = area_m2 * 10.7639 return area_ft2 def process_and_overlay_image(original_image, mask_prediction, output_image_path = None, resolution_cm=30): # Load original image # Convert mask prediction to binary mask mask = mask_prediction.astype(np.uint8) * 255 # Find contours in the mask contours, _ = cv2.findContours(mask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE) # List to hold areas in square feet areas_sqft = [] for contour in contours: area_pixels = cv2.contourArea(contour) area_sqft = pixel_to_sqft(area_pixels, resolution_cm) areas_sqft.append(area_sqft) # Draw contours on the original image cv2.drawContours(original_image, [contour], -1, (0, 255, 0), int(0.5)) # Green color for contours # Calculate and draw centroid M = cv2.moments(contour) if M["m00"] != 0: cX = int(M["m10"] / M["m00"]) cY = int(M["m01"] / M["m00"]) else: cX, cY = 0, 0 cv2.putText(original_image, f'{area_sqft:.0f}', (cX, cY), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (255, 0, 0), 1) # Save and display the image with contours #cv2.imwrite(output_image_path, cv2.cvtColor(original_image, cv2.COLOR_BGR2RGB)) # Display the image using matplotlib #return original_image return (cv2.cvtColor(original_image, cv2.COLOR_BGR2RGB))