Building_area / app.py
Pavan2k4's picture
Update app.py
e6126b5 verified
raw
history blame
7.46 kB
import streamlit as st
import sys
sys.path.append('Utils')
sys.path.append('model')
import torch
from model.CBAM.reunet_cbam import reunet_cbam
import cv2
from PIL import Image
from model.transform import transforms
import numpy as np
from model.unet import UNET
from Utils.area import pixel_to_sqft, process_and_overlay_image
import matplotlib.pyplot as plt
import time
import os
import csv
from datetime import datetime
from Utils.split_merge import split, merge
from Utils.convert import convert_gtiff_to_8bit
import shutil
# Define directories
UPLOAD_DIR = "data/uploaded_images/"
MASK_DIR = "data/generated_masks/"
PATCHES_DIR = 'data/Patches/'
PRED_PATCHES_DIR = 'data/Patch_pred/'
CSV_LOG_PATH = "image_log.csv"
# Create directories
for directory in [UPLOAD_DIR, MASK_DIR, PATCHES_DIR, PRED_PATCHES_DIR]:
os.makedirs(directory, exist_ok=True)
# Load model
model = reunet_cbam()
model.load_state_dict(torch.load('latest.pth', map_location='cpu')['model_state_dict'])
model.eval()
def predict(image):
with torch.no_grad():
output = model(image.unsqueeze(0))
return output.squeeze().cpu().numpy()
def log_image_details(image_id, image_filename, mask_filename):
file_exists = os.path.exists(CSV_LOG_PATH)
current_time = datetime.now()
date = current_time.strftime('%Y-%m-%d')
time = current_time.strftime('%H:%M:%S')
with open(CSV_LOG_PATH, mode='a', newline='') as file:
writer = csv.writer(file)
if not file_exists:
writer.writerow(['S.No', 'Date', 'Time', 'Image ID', 'Image Filename', 'Mask Filename'])
sno = sum(1 for row in open(CSV_LOG_PATH)) if file_exists else 1
writer.writerow([sno, date, time, image_id, image_filename, mask_filename])
def reset_state():
st.session_state.file_uploaded = False
st.session_state.filename = None
st.session_state.mask_filename = None
st.session_state.tr_img = None
if 'page' in st.session_state:
del st.session_state.page
def process_image(image, timestamp):
filename = f"image_{timestamp}{os.path.splitext(image.name)[1]}"
filepath = os.path.join(UPLOAD_DIR, filename)
with open(filepath, "wb") as f:
f.write(image.getvalue())
if filename.lower().endswith(('.tiff', '.tif')):
st.info('Processing GeoTIFF image...')
convert_gtiff_to_8bit(filepath)
st.success('GeoTIFF converted to 8-bit image')
return filename, filepath
def predict_image(img_array, filename, timestamp):
if img_array.shape[0] > 650 or img_array.shape[1] > 650:
split(os.path.join(UPLOAD_DIR, filename), patch_size=256)
with st.spinner('Analyzing...'):
for patch_filename in os.listdir(PATCHES_DIR):
if patch_filename.endswith(".png"):
patch_path = os.path.join(PATCHES_DIR, patch_filename)
patch_img = Image.open(patch_path)
patch_tr_img = transforms(patch_img)
prediction = predict(patch_tr_img)
mask = (prediction > 0.5).astype(np.uint8) * 255
mask_filename = f"mask_{patch_filename}"
mask_filepath = os.path.join(PRED_PATCHES_DIR, mask_filename)
Image.fromarray(mask).save(mask_filepath)
merged_mask_filename = f"mask_{timestamp}.png"
merged_mask_filepath = os.path.join(MASK_DIR, merged_mask_filename)
merge(PRED_PATCHES_DIR, merged_mask_filepath, img_array.shape)
st.info('Cleaning up temporary files...')
for dir in [PATCHES_DIR, PRED_PATCHES_DIR]:
shutil.rmtree(dir)
os.makedirs(dir)
st.success('Temporary files cleaned up')
else:
tr_img = transforms(Image.open(os.path.join(UPLOAD_DIR, filename)))
prediction = predict(tr_img)
mask = (prediction > 0.5).astype(np.uint8) * 255
merged_mask_filename = f"mask_{timestamp}.png"
merged_mask_filepath = os.path.join(MASK_DIR, merged_mask_filename)
Image.fromarray(mask).save(merged_mask_filepath)
return merged_mask_filepath
def upload_page():
if 'file_uploaded' not in st.session_state:
st.session_state.file_uploaded = False
image = st.file_uploader('Choose a satellite image', type=['jpg', 'png', 'jpeg', 'tiff', 'tif'])
if image is not None:
reset_state()
timestamp = int(time.time())
filename, filepath = process_image(image, timestamp)
img = Image.open(filepath)
st.image(img, caption='Uploaded Image', use_column_width=True)
st.success(f'Image saved as {filename}')
st.session_state.filename = filename
img_array = np.array(img)
mask_filepath = predict_image(img_array, filename, timestamp)
st.session_state.mask_filename = mask_filepath
log_image_details(timestamp, filename, os.path.basename(mask_filepath))
st.session_state.file_uploaded = True
if st.session_state.file_uploaded and st.button('View result'):
if st.session_state.filename is None:
st.error("Please upload an image before viewing the result.")
else:
st.success('Image analyzed')
st.session_state.page = 'result'
st.rerun()
def result_page():
st.title('Analysis Result')
if 'filename' not in st.session_state or 'mask_filename' not in st.session_state:
st.error("No image or mask file found. Please upload and process an image first.")
if st.button('Back to Upload'):
reset_state()
st.rerun()
return
col1, col2 = st.columns(2)
original_img_path = os.path.join(UPLOAD_DIR, st.session_state.filename)
mask_path = st.session_state.mask_filename
if os.path.exists(original_img_path):
original_img = Image.open(original_img_path)
col1.image(original_img, caption='Original Image', use_column_width=True)
else:
col1.error(f"Original image file not found: {original_img_path}")
if os.path.exists(mask_path):
mask = Image.open(mask_path)
col2.image(mask, caption='Predicted Mask', use_column_width=True)
else:
col2.error(f"Predicted mask file not found: {mask_path}")
st.subheader("Overlay with Area of Buildings (sqft)")
if os.path.exists(original_img_path) and os.path.exists(mask_path):
original_np = cv2.imread(original_img_path)
mask_np = cv2.imread(mask_path, cv2.IMREAD_GRAYSCALE)
_, mask_np = cv2.threshold(mask_np, 127, 255, cv2.THRESH_BINARY)
if original_np.shape[:2] != mask_np.shape[:2]:
mask_np = cv2.resize(mask_np, (original_np.shape[1], original_np.shape[0]))
overlay_img = process_and_overlay_image(original_np, mask_np, 'output.png')
st.image(overlay_img, caption='Overlay Image', use_column_width=True)
else:
st.error("Image or mask file not found for overlay.")
if st.button('Back to Upload'):
reset_state()
st.rerun()
def main():
st.title('Building area estimation')
if 'page' not in st.session_state:
st.session_state.page = 'upload'
if st.session_state.page == 'upload':
upload_page()
elif st.session_state.page == 'result':
result_page()
if __name__ == '__main__':
main()