Spaces:
Sleeping
Sleeping
File size: 7,464 Bytes
35d85a5 ebff05b 35d85a5 ebff05b 35d85a5 ebff05b e6126b5 35d85a5 359a4fd 2cc088e 35d85a5 359a4fd 35d85a5 359a4fd 35d85a5 359a4fd 35d85a5 359a4fd 35d85a5 359a4fd 35d85a5 359a4fd 35d85a5 359a4fd 35d85a5 359a4fd 35d85a5 359a4fd 35d85a5 359a4fd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 |
import streamlit as st
import sys
sys.path.append('Utils')
sys.path.append('model')
import torch
from model.CBAM.reunet_cbam import reunet_cbam
import cv2
from PIL import Image
from model.transform import transforms
import numpy as np
from model.unet import UNET
from Utils.area import pixel_to_sqft, process_and_overlay_image
import matplotlib.pyplot as plt
import time
import os
import csv
from datetime import datetime
from Utils.split_merge import split, merge
from Utils.convert import convert_gtiff_to_8bit
import shutil
# Define directories
UPLOAD_DIR = "data/uploaded_images/"
MASK_DIR = "data/generated_masks/"
PATCHES_DIR = 'data/Patches/'
PRED_PATCHES_DIR = 'data/Patch_pred/'
CSV_LOG_PATH = "image_log.csv"
# Create directories
for directory in [UPLOAD_DIR, MASK_DIR, PATCHES_DIR, PRED_PATCHES_DIR]:
os.makedirs(directory, exist_ok=True)
# Load model
model = reunet_cbam()
model.load_state_dict(torch.load('latest.pth', map_location='cpu')['model_state_dict'])
model.eval()
def predict(image):
with torch.no_grad():
output = model(image.unsqueeze(0))
return output.squeeze().cpu().numpy()
def log_image_details(image_id, image_filename, mask_filename):
file_exists = os.path.exists(CSV_LOG_PATH)
current_time = datetime.now()
date = current_time.strftime('%Y-%m-%d')
time = current_time.strftime('%H:%M:%S')
with open(CSV_LOG_PATH, mode='a', newline='') as file:
writer = csv.writer(file)
if not file_exists:
writer.writerow(['S.No', 'Date', 'Time', 'Image ID', 'Image Filename', 'Mask Filename'])
sno = sum(1 for row in open(CSV_LOG_PATH)) if file_exists else 1
writer.writerow([sno, date, time, image_id, image_filename, mask_filename])
def reset_state():
st.session_state.file_uploaded = False
st.session_state.filename = None
st.session_state.mask_filename = None
st.session_state.tr_img = None
if 'page' in st.session_state:
del st.session_state.page
def process_image(image, timestamp):
filename = f"image_{timestamp}{os.path.splitext(image.name)[1]}"
filepath = os.path.join(UPLOAD_DIR, filename)
with open(filepath, "wb") as f:
f.write(image.getvalue())
if filename.lower().endswith(('.tiff', '.tif')):
st.info('Processing GeoTIFF image...')
convert_gtiff_to_8bit(filepath)
st.success('GeoTIFF converted to 8-bit image')
return filename, filepath
def predict_image(img_array, filename, timestamp):
if img_array.shape[0] > 650 or img_array.shape[1] > 650:
split(os.path.join(UPLOAD_DIR, filename), patch_size=256)
with st.spinner('Analyzing...'):
for patch_filename in os.listdir(PATCHES_DIR):
if patch_filename.endswith(".png"):
patch_path = os.path.join(PATCHES_DIR, patch_filename)
patch_img = Image.open(patch_path)
patch_tr_img = transforms(patch_img)
prediction = predict(patch_tr_img)
mask = (prediction > 0.5).astype(np.uint8) * 255
mask_filename = f"mask_{patch_filename}"
mask_filepath = os.path.join(PRED_PATCHES_DIR, mask_filename)
Image.fromarray(mask).save(mask_filepath)
merged_mask_filename = f"mask_{timestamp}.png"
merged_mask_filepath = os.path.join(MASK_DIR, merged_mask_filename)
merge(PRED_PATCHES_DIR, merged_mask_filepath, img_array.shape)
st.info('Cleaning up temporary files...')
for dir in [PATCHES_DIR, PRED_PATCHES_DIR]:
shutil.rmtree(dir)
os.makedirs(dir)
st.success('Temporary files cleaned up')
else:
tr_img = transforms(Image.open(os.path.join(UPLOAD_DIR, filename)))
prediction = predict(tr_img)
mask = (prediction > 0.5).astype(np.uint8) * 255
merged_mask_filename = f"mask_{timestamp}.png"
merged_mask_filepath = os.path.join(MASK_DIR, merged_mask_filename)
Image.fromarray(mask).save(merged_mask_filepath)
return merged_mask_filepath
def upload_page():
if 'file_uploaded' not in st.session_state:
st.session_state.file_uploaded = False
image = st.file_uploader('Choose a satellite image', type=['jpg', 'png', 'jpeg', 'tiff', 'tif'])
if image is not None:
reset_state()
timestamp = int(time.time())
filename, filepath = process_image(image, timestamp)
img = Image.open(filepath)
st.image(img, caption='Uploaded Image', use_column_width=True)
st.success(f'Image saved as {filename}')
st.session_state.filename = filename
img_array = np.array(img)
mask_filepath = predict_image(img_array, filename, timestamp)
st.session_state.mask_filename = mask_filepath
log_image_details(timestamp, filename, os.path.basename(mask_filepath))
st.session_state.file_uploaded = True
if st.session_state.file_uploaded and st.button('View result'):
if st.session_state.filename is None:
st.error("Please upload an image before viewing the result.")
else:
st.success('Image analyzed')
st.session_state.page = 'result'
st.rerun()
def result_page():
st.title('Analysis Result')
if 'filename' not in st.session_state or 'mask_filename' not in st.session_state:
st.error("No image or mask file found. Please upload and process an image first.")
if st.button('Back to Upload'):
reset_state()
st.rerun()
return
col1, col2 = st.columns(2)
original_img_path = os.path.join(UPLOAD_DIR, st.session_state.filename)
mask_path = st.session_state.mask_filename
if os.path.exists(original_img_path):
original_img = Image.open(original_img_path)
col1.image(original_img, caption='Original Image', use_column_width=True)
else:
col1.error(f"Original image file not found: {original_img_path}")
if os.path.exists(mask_path):
mask = Image.open(mask_path)
col2.image(mask, caption='Predicted Mask', use_column_width=True)
else:
col2.error(f"Predicted mask file not found: {mask_path}")
st.subheader("Overlay with Area of Buildings (sqft)")
if os.path.exists(original_img_path) and os.path.exists(mask_path):
original_np = cv2.imread(original_img_path)
mask_np = cv2.imread(mask_path, cv2.IMREAD_GRAYSCALE)
_, mask_np = cv2.threshold(mask_np, 127, 255, cv2.THRESH_BINARY)
if original_np.shape[:2] != mask_np.shape[:2]:
mask_np = cv2.resize(mask_np, (original_np.shape[1], original_np.shape[0]))
overlay_img = process_and_overlay_image(original_np, mask_np, 'output.png')
st.image(overlay_img, caption='Overlay Image', use_column_width=True)
else:
st.error("Image or mask file not found for overlay.")
if st.button('Back to Upload'):
reset_state()
st.rerun()
def main():
st.title('Building area estimation')
if 'page' not in st.session_state:
st.session_state.page = 'upload'
if st.session_state.page == 'upload':
upload_page()
elif st.session_state.page == 'result':
result_page()
if __name__ == '__main__':
main() |