File size: 11,742 Bytes
0fc522e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b05adb3
0fc522e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ec13f7a
0fc522e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b348cfd
0fc522e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b348cfd
 
0fc522e
 
 
 
 
 
 
ec13f7a
0fc522e
 
 
 
 
 
 
 
 
 
 
ec13f7a
 
 
0fc522e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b348cfd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
import requests
from datetime import datetime, timedelta
from decimal import Decimal
import boto3
import uuid
import time
import urllib.request
from lxml import etree
from googletrans import Translator
from transformers import pipeline
from PyPDF2 import PdfReader
import os

AWS_ACCESS_KEY_ID = os.environ['AWS_ACCESS_KEY_ID']
AWS_SECRET_ACCESS_KEY = os.environ['AWS_SECRET_ACCESS_KEY']

analyzer = pipeline("sentiment-analysis", model="ProsusAI/finbert")

translator = Translator()

def datemodifier(date_string):
    """Date Modifier Function"""
    try:
        to_date = time.strptime(date_string,"%Y-%m-%d-%H:%M:%S")
        return time.strftime("%Y-%m-%d",to_date)
    except:
        return False

def fetch_url(url):
    response = requests.get(url)
    if response.status_code == 200:
        return response.text
    else:
        return None

def translist(infolist):
    """Translist Function"""
    out = list(filter(lambda s: s and
                      (isinstance (s,str) or len(s.strip()) > 0), [i.strip() for i in infolist]))
    return out

def encode(content):
    """Encode Function"""
    text = ''
    for element in content[:1]:
        if isinstance(element, etree._Element):
            subelement = etree.tostring(element).decode()
            subpage = etree.HTML(subelement)
            tree = subpage.xpath('//text()')
            line = ''.join(translist(tree)).\
                replace('\n','').replace('\t','').replace('\r','').replace('  ','').strip()
        else:
            line = element
        text += line
        index = text.find('打印本页')
        if index != -1:
          text = text[:index]
        
    return text

def extract_from_pdf(url):
    # Send a GET request to the URL and retrieve the PDF content
    response = requests.get(url)
    pdf_content = response.content

    # Save the PDF content to a local file
    with open("downloaded_file.pdf", "wb") as f:
        f.write(pdf_content)

    # Open the downloaded PDF file and extract the text
    with open("downloaded_file.pdf", "rb") as f:
        pdf_reader = PdfReader(f)
        num_pages = len(pdf_reader.pages)
        extracted_text = ""
        extracted_text_eng = ""
        for page in range(num_pages):
            text = pdf_reader.pages[page].extract_text()
            if text and text[0].isdigit():
                text = text[1:]
            first_newline_index = text.find('\n')
            text = text[:first_newline_index+1].replace('\n', ' ') + text[first_newline_index+1:].replace('\n', '')
            extracted_text_eng += translator.translate(text, dest='en').text
            extracted_text += text
    return extracted_text, extracted_text_eng

def get_db_connection():
    """Get dynamoDB connection"""
    dynamodb = boto3.resource(
    service_name='dynamodb',
    region_name='us-east-1',
    aws_access_key_id=AWS_ACCESS_KEY_ID,
    aws_secret_access_key=AWS_SECRET_ACCESS_KEY
    )
    return dynamodb

def upsert_content(report):
    """Upsert the content records"""
    dynamodb = get_db_connection()
    table = dynamodb.Table('article_china')
        # Define the item data
    item = {
        'id': str(report['id']),
        'site': report['site'],
        'title': report['title'],
        # 'originalSite': report['originalSite'],
        # 'originalTitle': report['originalTitle'],
        # 'originalContent': report['originalContent'],
        'category': report['category'],
        # 'author': report['author'],
        'content': report['content'],
        'publishDate': report['publishDate'],
        'link': report['url'],
        # 'attachment': report['reporturl'],
        # 'authorID': str(report['authorid']),
        'sentimentScore': str(Decimal(report['sentimentScore']).quantize(Decimal('0.01'))),
        'sentimentLabel': report['sentimentLabel'],
        'LastModifiedDate': datetime.now().strftime("%Y-%m-%dT%H:%M:%S")
    }
    response = table.put_item(Item=item)
    print(response)

i = 0
while i > -1:
    if i == 0:
      categoryu_url = "https://www.gov.cn/zhengce/jiedu/home.htm"
    else:
      categoryu_url = f"https://www.gov.cn/zhengce/jiedu/home_{i}.htm"
    i = i + 1
    req = urllib.request.urlopen(categoryu_url)
    text = req.read()
    html_text = text.decode("utf-8")
    page = etree.HTML(html_text)
    articlelist = page.xpath("//div[contains(@class, 'news_box')]//h4")
    for article in articlelist:
        if isinstance(article, etree._Element):
            subelement = etree.tostring(article).decode()
            subpage = etree.HTML(subelement)
            date = subpage.xpath("//span/text()")[0]
            parsed_datetime = datetime.strptime(time.strftime("%Y-%m-%d", time.strptime(date,"%Y-%m-%d")), "%Y-%m-%d")
            if  parsed_datetime < (datetime.today() - timedelta(days=183)):
                i = -1
            else:
                urls = subpage.xpath("//a[contains(@target, '_blank')]/@href")
                for url in urls:
                    try:
                        article = {}
                        url = url.replace('../', 'https://www.gov.cn/zhengce/')
                        if "https://www.gov.cn" in url:
                          req = urllib.request.urlopen(url)
                          text = req.read()
                          html_text = text.decode("utf-8")
                          page = etree.HTML(html_text)
                          article['originalContent'] = encode(page.xpath("//div[contains(@id, 'UCAP-CONTENT')]//p"))
                          content_eng = ''
                          for element in article['originalContent'].split("。"):
                            content_eng += translator.translate(element, dest='en').text + ' '
                          article['content'] = content_eng
                          article['site'] = "State Council"
                          article['originalSite'] = "国务院"
                          article['originalTitle'] = page.xpath("//title/text()")[0]
                          article['title'] = translator.translate(article['originalTitle'], dest='en').text
                          article['url'] = url
                          article['category']= "Policy Interpretation"
                          article['publishDate'] = datemodifier(page.xpath("//meta[@name = 'firstpublishedtime']/@content")[0])
                        article['id'] = uuid.uuid5(uuid.NAMESPACE_OID, article['title']+article['publishDate'])
                        label_dict = {
                            "positive": "+",
                            "negative": "-",
                            "neutral": "0",
                        }
                        sentiment_score = 0
                        maximum_value = 0
                        raw_sentiment = analyzer(article['content'][:512], return_all_scores=True)
                        sentiment_label = None
                        for sentiment_dict in raw_sentiment[0]:
                            value = sentiment_dict["score"]
                            if value > maximum_value:
                                sentiment_label = sentiment_dict["label"]
                                maximum_value = value
                            if sentiment_dict["label"] == "positive":
                                sentiment_score = sentiment_score + value
                            if sentiment_dict["label"] == "negative":
                                sentiment_score = sentiment_score - value
                            else:
                                sentiment_score = sentiment_score + 0
                        article['sentimentScore'] = sentiment_score
                        article['sentimentLabel'] = label_dict[sentiment_label]
                        upsert_content(article)
                    except Exception as error:
                        print(error)

i = 0
while i > -1:
    if i == 0:
      categoryu_url = "https://www.gov.cn/zhengce/zuixin/home.htm"
    else:
      categoryu_url = f"https://www.gov.cn/zhengce/zuixin/home_{i}.htm"
    i = i + 1
    req = urllib.request.urlopen(categoryu_url)
    text = req.read()
    html_text = text.decode("utf-8")
    page = etree.HTML(html_text)
    articlelist = page.xpath("//div[contains(@class, 'news_box')]//h4")
    for article in articlelist:
        if isinstance(article, etree._Element):
            subelement = etree.tostring(article).decode()
            subpage = etree.HTML(subelement)
            date = subpage.xpath("//span/text()")[0]
            parsed_datetime = datetime.strptime(time.strftime("%Y-%m-%d", time.strptime(date,"%Y-%m-%d")), "%Y-%m-%d")
            if  parsed_datetime < (datetime.today() - timedelta(days=183)):
                i = -1
            else:
                urls = subpage.xpath("//a[contains(@target, '_blank')]/@href")
                for url in urls:
                    try:
                        article = {}
                        url = url.replace('../', 'https://www.gov.cn/zhengce/')
                        if "https://www.gov.cn" in url:
                          req = urllib.request.urlopen(url)
                          text = req.read()
                          html_text = text.decode("utf-8")
                          page = etree.HTML(html_text)
                          article['originalContent'] = encode(page.xpath("//div[contains(@id, 'UCAP-CONTENT')]//p"))
                          content_eng = ''
                          for element in article['originalContent'].split("。"):
                            content_eng += translator.translate(element, dest='en').text + ' '
                          article['content'] = content_eng
                          article['site'] = "State Council"
                          article['originalSite'] = "国务院"
                          article['originalTitle'] = page.xpath("//title/text()")[0]
                          article['title'] = translator.translate(article['originalTitle'], dest='en').text
                          article['url'] = url
                          article['category']= "Policy Release"
                          article['publishDate'] = datemodifier(page.xpath("//meta[@name = 'firstpublishedtime']/@content")[0])
                        article['id'] = uuid.uuid5(uuid.NAMESPACE_OID, article['title']+article['publishDate'])
                        label_dict = {
                            "positive": "+",
                            "negative": "-",
                            "neutral": "0",
                        }
                        sentiment_score = 0
                        maximum_value = 0
                        raw_sentiment = analyzer(article['content'][:512], return_all_scores=True)
                        sentiment_label = None
                        for sentiment_dict in raw_sentiment[0]:
                            value = sentiment_dict["score"]
                            if value > maximum_value:
                                sentiment_label = sentiment_dict["label"]
                                maximum_value = value
                            if sentiment_dict["label"] == "positive":
                                sentiment_score = sentiment_score + value
                            if sentiment_dict["label"] == "negative":
                                sentiment_score = sentiment_score - value
                            else:
                                sentiment_score = sentiment_score + 0
                        article['sentimentScore'] = sentiment_score
                        article['sentimentLabel'] = label_dict[sentiment_label]
                        upsert_content(article)
                    except Exception as error:
                        print(error)