OxbridgeEconomics commited on
Commit
b05adb3
·
1 Parent(s): 2034ad2
Files changed (2) hide show
  1. gov.py +1 -1
  2. ner.ipynb +0 -85
gov.py CHANGED
@@ -21,7 +21,7 @@ translator = Translator()
21
  def datemodifier(date_string):
22
  """Date Modifier Function"""
23
  try:
24
- to_date = time.strptime(date_string,"%Y-%m-%d %H:%M:%S")
25
  return time.strftime("%Y-%m-%d",to_date)
26
  except:
27
  return False
 
21
  def datemodifier(date_string):
22
  """Date Modifier Function"""
23
  try:
24
+ to_date = time.strptime(date_string,"%Y-%m-%d-%H:%M:%S")
25
  return time.strftime("%Y-%m-%d",to_date)
26
  except:
27
  return False
ner.ipynb DELETED
@@ -1,85 +0,0 @@
1
- {
2
- "cells": [
3
- {
4
- "cell_type": "code",
5
- "execution_count": null,
6
- "metadata": {},
7
- "outputs": [],
8
- "source": [
9
- "from flair.nn import Classifier\n",
10
- "from flair.data import Sentence\n",
11
- "\n",
12
- "linker = Classifier.load('linker')\n",
13
- "ner = Classifier.load('flair/ner-english-ontonotes-fast')\n",
14
- "\n",
15
- "def linker_model(input_text, tagger):\n",
16
- " \"\"\"Linker model predict tags for sentences\"\"\"\n",
17
- " sentence = Sentence(input_text)\n",
18
- " tagger.predict(sentence)\n",
19
- "\n",
20
- " # iterate through sentences and print predicted labels\n",
21
- " label_dict = {}\n",
22
- " for label in sentence.get_labels():\n",
23
- " if label.data_point.text.endswith(\"F.C.\"):\n",
24
- " continue\n",
25
- " if (label.score>0.5) & (label.value != \"<unk>\"):\n",
26
- " if label.value in label_dict:\n",
27
- " label_dict[label.value].append(label.data_point.text)\n",
28
- " else:\n",
29
- " label_dict[label.value] = [label.data_point.text]\n",
30
- " return label_dict\n",
31
- "\n",
32
- "def find_keys_by_value(dictionary, value):\n",
33
- " \"\"\"Find key by value\"\"\"\n",
34
- " keys = []\n",
35
- " for key, values in dictionary.items():\n",
36
- " if value in values:\n",
37
- " keys.append(key)\n",
38
- " return keys\n",
39
- "\n",
40
- "def recognition_model(input_text, label_dict, tagger):\n",
41
- " \"\"\"recognition model\"\"\"\n",
42
- " ner_dict = {}\n",
43
- " score_dict = {}\n",
44
- " sentence = Sentence(input_text)\n",
45
- " tagger.predict(sentence)\n",
46
- " # for sentence in sentences:\n",
47
- " for label in sentence.get_labels():\n",
48
- " if label.score>0.5:\n",
49
- " data_point = label.data_point.text\n",
50
- " label_value = label.value\n",
51
- " # label_value PER\n",
52
- " keys = find_keys_by_value(label_dict, data_point)\n",
53
- " if len(keys)>0:\n",
54
- " if label_value in ner_dict:\n",
55
- " if keys[0] not in ner_dict[label_value]:\n",
56
- " ner_dict[label.value].append(keys[0])\n",
57
- " score_dict[keys[0]] = label.score\n",
58
- " else:\n",
59
- " ner_dict[label.value] = [keys[0]]\n",
60
- " score_dict[keys[0]] = label.score\n",
61
- " return ner_dict, score_dict"
62
- ]
63
- },
64
- {
65
- "cell_type": "code",
66
- "execution_count": null,
67
- "metadata": {},
68
- "outputs": [],
69
- "source": [
70
- "for _, item in df.iterrows():\n",
71
- " label_dict = linker_model(item['content'],linker)\n",
72
- " ner_dict, score_dict = recognition_model(item['content'], label_dict, ner)\n",
73
- " # result = result_dictionary_constructor(ner_dict, label_dict)\n",
74
- " print(ner_dict, score_dict)"
75
- ]
76
- }
77
- ],
78
- "metadata": {
79
- "language_info": {
80
- "name": "python"
81
- }
82
- },
83
- "nbformat": 4,
84
- "nbformat_minor": 2
85
- }