File size: 14,877 Bytes
a6d7194
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
import requests
import uuid
import time
import urllib.request
from lxml import etree
from googletrans import Translator
from transformers import pipeline
from PyPDF2 import PdfReader
analyzer = pipeline("sentiment-analysis", model="ProsusAI/finbert")

translator = Translator()

def datemodifier(date_string):
    """Date Modifier Function"""
    try:
        to_date = time.strptime(date_string,"%Y-%m-%d %H:%M:%S")
        return time.strftime("%Y-%m-%d",to_date)
    except:
        return False

def fetch_url(url):
    response = requests.get(url)
    if response.status_code == 200:
        return response.text
    else:
        return None
    
def translist(infolist):
    """Translist Function"""
    out = list(filter(lambda s: s and
                      (isinstance (s,str) or len(s.strip()) > 0), [i.strip() for i in infolist]))
    return out

def encode(content):
    """Encode Function"""
    text = ''
    for element in content:
        if isinstance(element, etree._Element):
            subelement = etree.tostring(element).decode()
            subpage = etree.HTML(subelement)
            tree = subpage.xpath('//text()')
            line = ''.join(translist(tree)).\
                replace('\n','').replace('\t','').replace('\r','').replace('  ','').strip()
        else:
            line = element
        text += line
    return text

def extract_from_pdf(url):
    # Send a GET request to the URL and retrieve the PDF content
    response = requests.get(url)
    pdf_content = response.content

    # Save the PDF content to a local file
    with open("downloaded_file.pdf", "wb") as f:
        f.write(pdf_content)

    # Open the downloaded PDF file and extract the text
    with open("downloaded_file.pdf", "rb") as f:
        pdf_reader = PdfReader(f)
        num_pages = len(pdf_reader.pages)
        extracted_text = ""
        extracted_text_eng = ""
        for page in range(num_pages):
            text = pdf_reader.pages[page].extract_text()
            if text and text[0].isdigit():
                text = text[1:]
            first_newline_index = text.find('\n')
            text = text[:first_newline_index+1].replace('\n', ' ') + text[first_newline_index+1:].replace('\n', '')
            extracted_text_eng += translator.translate(text, dest='en').text
            extracted_text += text
    return extracted_text, extracted_text_eng

"""Upload file to dynamoDB"""
# import datetime
from datetime import datetime, timedelta
from decimal import Decimal
import boto3

AWS_ACCESS_KEY_ID = "AKIAQFXZMGHQYXKWUDWR"
AWS_SECRET_ACCESS_KEY = "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"

print(AWS_ACCESS_KEY_ID, AWS_SECRET_ACCESS_KEY)

def get_db_connection():
    """Get dynamoDB connection"""
    dynamodb = boto3.resource(
    service_name='dynamodb',
    region_name='us-east-1',
    aws_access_key_id=AWS_ACCESS_KEY_ID,
    aws_secret_access_key=AWS_SECRET_ACCESS_KEY
    )
    return dynamodb

def upsert_content(report):
    """Upsert the content records"""
    dynamodb = get_db_connection()
    table = dynamodb.Table('article_test')
        # Define the item data
    item = {
        'id': str(report['id']),
        'site': report['site'],
        'title': report['title'],
        'originalSite': report['originalSite'],
        'originalTitle': report['originalTitle'],
        'originalContent': report['originalContent'],
        'category': report['category'],
        # 'author': report['author'],
        'content': report['content'],
        'publishDate': report['publishDate'],
        'link': report['url'],
        # 'attachment': report['reporturl'],
        # 'authorID': str(report['authorid']),
        'sentimentScore': str(Decimal(report['sentimentScore']).quantize(Decimal('0.01'))),
        'sentimentLabel': report['sentimentLabel'],
        'LastModifiedDate': datetime.now().strftime("%Y-%m-%dT%H:%M:%S")
    }
    response = table.put_item(Item=item)
    print(response)

reportList = []
categoryu_urls = ["https://www.mof.gov.cn/zhengwuxinxi/caizhengxinwen/"]
for categoryu_url in categoryu_urls:
    req = urllib.request.urlopen(categoryu_url)
    text = req.read()
    html_text = text.decode("utf-8")
    page = etree.HTML(html_text)
    articlelist = page.xpath("//div[contains(@class, 'xwfb_listerji')]/ul/li[not(@class = 'clear')]")
    for article in articlelist:
        if isinstance(article, etree._Element):
            subelement = etree.tostring(article).decode()
            subpage = etree.HTML(subelement)
            date = subpage.xpath("//span/text()")[0]
            parsed_datetime = datetime.strptime(time.strftime("%Y-%m-%d", time.strptime(date,"%Y-%m-%d")), "%Y-%m-%d")
            if  parsed_datetime > (datetime.today() - timedelta(days=180)):
                urls = subpage.xpath("//a[contains(@target, '_blank')]/@href")
                for url in urls:
                    try:
                        print(url)
                        article = {}
                        url = url.replace("./", "https://www.mof.gov.cn/zhengwuxinxi/caizhengxinwen/")
                        req = urllib.request.urlopen(url)
                        text = req.read()
                        html_text = text.decode("utf-8")
                        page = etree.HTML(html_text)
                        article['originalContent'] = encode(page.xpath("//div[contains(@class, 'TRS_Editor')]//p"))
                        article['content'] = translator.translate(article['originalContent'], dest='en').text
                        article['site'] = "Ministry of Finance"
                        article['originalSite'] = "财政部"
                        article['originalTitle'] = page.xpath("//meta[@name = 'ArticleTitle']/@content")[0]
                        article['title'] = translator.translate(article['originalTitle'], dest='en').text
                        article['url'] = url
                        article['category']= "Finance News"
                        article['publishDate'] = datemodifier(page.xpath("//meta[@name = 'PubDate']/@content")[0])
                        article['id'] = uuid.uuid5(uuid.NAMESPACE_OID, article['title']+article['publishDate'])
                        label_dict = {
                            "positive": "+",
                            "negative": "-",
                            "neutral": "0",
                        }
                        sentiment_score = 0
                        maximum_value = 0
                        raw_sentiment = analyzer(article['content'][:512], return_all_scores=True)
                        sentiment_label = None
                        for sentiment_dict in raw_sentiment[0]:
                            value = sentiment_dict["score"]
                            if value > maximum_value:
                                sentiment_label = sentiment_dict["label"]
                                maximum_value = value
                            if sentiment_dict["label"] == "positive":
                                sentiment_score = sentiment_score + value
                            if sentiment_dict["label"] == "negative":
                                sentiment_score = sentiment_score - value
                            else:
                                sentiment_score = sentiment_score + 0
                        article['sentimentScore'] = sentiment_score
                        article['sentimentLabel'] = label_dict[sentiment_label]
                        print(article)
                        # upsert_content(article)
                    except Exception as error:
                        print(error)

reportList = []
categoryu_urls = ["https://www.mof.gov.cn/zhengwuxinxi/zhengcefabu/"]
for categoryu_url in categoryu_urls:
    req = urllib.request.urlopen(categoryu_url)
    text = req.read()
    html_text = text.decode("utf-8")
    page = etree.HTML(html_text)
    articlelist = page.xpath("//div[contains(@class, 'xwfb_listerji')]/ul/li[not(@class = 'clear')]")
    for article in articlelist:
        if isinstance(article, etree._Element):
            subelement = etree.tostring(article).decode()
            subpage = etree.HTML(subelement)
            date = subpage.xpath("//span/text()")[0]
            parsed_datetime = datetime.strptime(time.strftime("%Y-%m-%d", time.strptime(date,"%Y-%m-%d")), "%Y-%m-%d")
            if  parsed_datetime > (datetime.today() - timedelta(days=180)):
                urls = subpage.xpath("//a[contains(@target, '_blank')]/@href")
                for url in urls:
                    try:
                        print(url)
                        article = {}
                        url = url.replace("./", categoryu_url)
                        req = urllib.request.urlopen(url)
                        text = req.read()
                        html_text = text.decode("utf-8")
                        page = etree.HTML(html_text)
                        article['originalContent'] = encode(page.xpath("//div[contains(@class, 'TRS_Editor')]//p"))
                        article['content'] = translator.translate(article['originalContent'], dest='en').text
                        article['site'] = "Ministry of Finance"
                        article['originalSite'] = "财政部"
                        article['originalTitle'] = page.xpath("//meta[@name = 'ArticleTitle']/@content")[0]
                        article['title'] = translator.translate(article['originalTitle'], dest='en').text
                        article['url'] = url
                        article['category']= "Policy Release"
                        article['publishDate'] = datemodifier(page.xpath("//meta[@name = 'PubDate']/@content")[0])
                        article['id'] = uuid.uuid5(uuid.NAMESPACE_OID, article['title']+article['publishDate'])
                        label_dict = {
                            "positive": "+",
                            "negative": "-",
                            "neutral": "0",
                        }
                        sentiment_score = 0
                        maximum_value = 0
                        raw_sentiment = analyzer(article['content'][:512], return_all_scores=True)
                        sentiment_label = None
                        for sentiment_dict in raw_sentiment[0]:
                            value = sentiment_dict["score"]
                            if value > maximum_value:
                                sentiment_label = sentiment_dict["label"]
                                maximum_value = value
                            if sentiment_dict["label"] == "positive":
                                sentiment_score = sentiment_score + value
                            if sentiment_dict["label"] == "negative":
                                sentiment_score = sentiment_score - value
                            else:
                                sentiment_score = sentiment_score + 0
                        article['sentimentScore'] = sentiment_score
                        article['sentimentLabel'] = label_dict[sentiment_label]
                        print(article)
                        # upsert_content(article)
                    except Exception as error:
                        print(error)

reportList = []
categoryu_urls = ["https://www.mof.gov.cn/zhengwuxinxi/zhengcejiedu/"]
for categoryu_url in categoryu_urls:
    req = urllib.request.urlopen(categoryu_url)
    text = req.read()
    html_text = text.decode("utf-8")
    page = etree.HTML(html_text)
    articlelist = page.xpath("//div[contains(@class, 'xwfb_listerji')]/ul/li[not(@class = 'clear')]")
    for article in articlelist:
        if isinstance(article, etree._Element):
            subelement = etree.tostring(article).decode()
            subpage = etree.HTML(subelement)
            date = subpage.xpath("//span/text()")[0]
            parsed_datetime = datetime.strptime(time.strftime("%Y-%m-%d", time.strptime(date,"%Y-%m-%d")), "%Y-%m-%d")
            if  parsed_datetime > (datetime.today() - timedelta(days=180)):
                urls = subpage.xpath("//a[contains(@target, '_blank')]/@href")
                for url in urls:
                    try:
                        print(url)
                        article = {}
                        url = url.replace("./", categoryu_url)
                        req = urllib.request.urlopen(url)
                        text = req.read()
                        html_text = text.decode("utf-8")
                        page = etree.HTML(html_text)
                        article['originalContent'] = encode(page.xpath("//div[contains(@class, 'TRS_Editor')]//p"))
                        article['content'] = translator.translate(article['originalContent'], dest='en').text
                        article['site'] = "Ministry of Finance"
                        article['originalSite'] = "财政部"
                        article['originalTitle'] = page.xpath("//meta[@name = 'ArticleTitle']/@content")[0]
                        article['title'] = translator.translate(article['originalTitle'], dest='en').text
                        article['url'] = url
                        article['category']= "Policy Interpretation"
                        article['publishDate'] = datemodifier(page.xpath("//meta[@name = 'PubDate']/@content")[0])
                        article['id'] = uuid.uuid5(uuid.NAMESPACE_OID, article['title']+article['publishDate'])
                        label_dict = {
                            "positive": "+",
                            "negative": "-",
                            "neutral": "0",
                        }
                        sentiment_score = 0
                        maximum_value = 0
                        raw_sentiment = analyzer(article['content'][:512], return_all_scores=True)
                        sentiment_label = None
                        for sentiment_dict in raw_sentiment[0]:
                            value = sentiment_dict["score"]
                            if value > maximum_value:
                                sentiment_label = sentiment_dict["label"]
                                maximum_value = value
                            if sentiment_dict["label"] == "positive":
                                sentiment_score = sentiment_score + value
                            if sentiment_dict["label"] == "negative":
                                sentiment_score = sentiment_score - value
                            else:
                                sentiment_score = sentiment_score + 0
                        article['sentimentScore'] = sentiment_score
                        article['sentimentLabel'] = label_dict[sentiment_label]
                        print(article)
                        # upsert_content(article)
                    except Exception as error:
                        print(error)