OxbridgeEconomics
commited on
Commit
·
a6d7194
1
Parent(s):
66cae81
commit
Browse files- .github/workflows/eastmoney.yml +37 -0
- .github/workflows/{python-app.yml → mof.yml} +2 -2
- .github/workflows/ndrc.yml +37 -0
- main.ipynb → eastmoney.ipynb +0 -0
- main.py → eastmoney.py +3 -2
- mof.ipynb +0 -0
- mof.py +305 -0
- ndrc.ipynb +0 -0
- ndrc.py +259 -0
- requirements.txt +1 -0
- sample.csv +0 -0
.github/workflows/eastmoney.yml
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# This workflow will install Python dependencies, run tests and lint with a single version of Python
|
2 |
+
# For more information see: https://docs.github.com/en/actions/automating-builds-and-tests/building-and-testing-python
|
3 |
+
|
4 |
+
name: Data Collection - EastMoney
|
5 |
+
|
6 |
+
on:
|
7 |
+
# schedule:
|
8 |
+
# - cron: '0 16 * * *'
|
9 |
+
workflow_dispatch:
|
10 |
+
|
11 |
+
permissions:
|
12 |
+
contents: read
|
13 |
+
|
14 |
+
jobs:
|
15 |
+
build:
|
16 |
+
|
17 |
+
runs-on: ubuntu-latest
|
18 |
+
|
19 |
+
steps:
|
20 |
+
- uses: actions/checkout@v3
|
21 |
+
- name: Set up Python 3.10
|
22 |
+
uses: actions/setup-python@v3
|
23 |
+
with:
|
24 |
+
python-version: "3.10"
|
25 |
+
- name: Install dependencies
|
26 |
+
run: |
|
27 |
+
python -m pip install --upgrade pip
|
28 |
+
if [ -f requirements.txt ]; then pip install -r requirements.txt; fi
|
29 |
+
pip install transformers
|
30 |
+
pip install tensorflow
|
31 |
+
pip install tf-keras
|
32 |
+
- name: Data Collection
|
33 |
+
env:
|
34 |
+
AWS_ACCESS_KEY_ID: ${{ secrets.AWS_ACCESS_KEY_ID }}
|
35 |
+
AWS_SECRET_ACCESS_KEY: ${{ secrets.AWS_SECRET_ACCESS_KEY }}
|
36 |
+
run: |
|
37 |
+
python eastmoney.py
|
.github/workflows/{python-app.yml → mof.yml}
RENAMED
@@ -1,7 +1,7 @@
|
|
1 |
# This workflow will install Python dependencies, run tests and lint with a single version of Python
|
2 |
# For more information see: https://docs.github.com/en/actions/automating-builds-and-tests/building-and-testing-python
|
3 |
|
4 |
-
name:
|
5 |
|
6 |
on:
|
7 |
# schedule:
|
@@ -34,4 +34,4 @@ jobs:
|
|
34 |
AWS_ACCESS_KEY_ID: ${{ secrets.AWS_ACCESS_KEY_ID }}
|
35 |
AWS_SECRET_ACCESS_KEY: ${{ secrets.AWS_SECRET_ACCESS_KEY }}
|
36 |
run: |
|
37 |
-
python
|
|
|
1 |
# This workflow will install Python dependencies, run tests and lint with a single version of Python
|
2 |
# For more information see: https://docs.github.com/en/actions/automating-builds-and-tests/building-and-testing-python
|
3 |
|
4 |
+
name: Data Collection - MOF
|
5 |
|
6 |
on:
|
7 |
# schedule:
|
|
|
34 |
AWS_ACCESS_KEY_ID: ${{ secrets.AWS_ACCESS_KEY_ID }}
|
35 |
AWS_SECRET_ACCESS_KEY: ${{ secrets.AWS_SECRET_ACCESS_KEY }}
|
36 |
run: |
|
37 |
+
python mof.py
|
.github/workflows/ndrc.yml
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# This workflow will install Python dependencies, run tests and lint with a single version of Python
|
2 |
+
# For more information see: https://docs.github.com/en/actions/automating-builds-and-tests/building-and-testing-python
|
3 |
+
|
4 |
+
name: Data Collection - NDRC
|
5 |
+
|
6 |
+
on:
|
7 |
+
# schedule:
|
8 |
+
# - cron: '0 16 * * *'
|
9 |
+
workflow_dispatch:
|
10 |
+
|
11 |
+
permissions:
|
12 |
+
contents: read
|
13 |
+
|
14 |
+
jobs:
|
15 |
+
build:
|
16 |
+
|
17 |
+
runs-on: ubuntu-latest
|
18 |
+
|
19 |
+
steps:
|
20 |
+
- uses: actions/checkout@v3
|
21 |
+
- name: Set up Python 3.10
|
22 |
+
uses: actions/setup-python@v3
|
23 |
+
with:
|
24 |
+
python-version: "3.10"
|
25 |
+
- name: Install dependencies
|
26 |
+
run: |
|
27 |
+
python -m pip install --upgrade pip
|
28 |
+
if [ -f requirements.txt ]; then pip install -r requirements.txt; fi
|
29 |
+
pip install transformers
|
30 |
+
pip install tensorflow
|
31 |
+
pip install tf-keras
|
32 |
+
- name: Data Collection
|
33 |
+
env:
|
34 |
+
AWS_ACCESS_KEY_ID: ${{ secrets.AWS_ACCESS_KEY_ID }}
|
35 |
+
AWS_SECRET_ACCESS_KEY: ${{ secrets.AWS_SECRET_ACCESS_KEY }}
|
36 |
+
run: |
|
37 |
+
python ndrc.py
|
main.ipynb → eastmoney.ipynb
RENAMED
File without changes
|
main.py → eastmoney.py
RENAMED
@@ -74,6 +74,7 @@ def upsert_content(report):
|
|
74 |
'site': report['site'],
|
75 |
'title': report['title'],
|
76 |
'originalSite': report['originalSite'],
|
|
|
77 |
'originalContent': report['originalContent'],
|
78 |
'category': "Macroeconomic Research",
|
79 |
'author': report['author'],
|
@@ -94,7 +95,7 @@ reportList = []
|
|
94 |
|
95 |
|
96 |
today = datetime.today().strftime('%Y-%m-%d')
|
97 |
-
beginDate = (datetime.today() - timedelta(days=
|
98 |
i = 0
|
99 |
while i > -1:
|
100 |
url = "https://reportapi.eastmoney.com/report/jg"
|
@@ -135,8 +136,8 @@ while i > -1:
|
|
135 |
report['site'] = translator.translate(report['orgName'], dest='en').text
|
136 |
report['originalSite'] = report['orgSName']
|
137 |
report['reporturl'] = reporturl
|
138 |
-
report['title'] = translator.translate(report['title'], dest='en').text
|
139 |
report['originalTitle'] = report['title']
|
|
|
140 |
report['author'] = translator.translate(report['researcher'], dest='en').text
|
141 |
report['originalAuthor'] = report['researcher']
|
142 |
report['originalContent'] = content
|
|
|
74 |
'site': report['site'],
|
75 |
'title': report['title'],
|
76 |
'originalSite': report['originalSite'],
|
77 |
+
'originalTitle': report['originalTitle'],
|
78 |
'originalContent': report['originalContent'],
|
79 |
'category': "Macroeconomic Research",
|
80 |
'author': report['author'],
|
|
|
95 |
|
96 |
|
97 |
today = datetime.today().strftime('%Y-%m-%d')
|
98 |
+
beginDate = (datetime.today() - timedelta(days=180)).strftime('%Y-%m-%d')
|
99 |
i = 0
|
100 |
while i > -1:
|
101 |
url = "https://reportapi.eastmoney.com/report/jg"
|
|
|
136 |
report['site'] = translator.translate(report['orgName'], dest='en').text
|
137 |
report['originalSite'] = report['orgSName']
|
138 |
report['reporturl'] = reporturl
|
|
|
139 |
report['originalTitle'] = report['title']
|
140 |
+
report['title'] = translator.translate(report['title'], dest='en').text
|
141 |
report['author'] = translator.translate(report['researcher'], dest='en').text
|
142 |
report['originalAuthor'] = report['researcher']
|
143 |
report['originalContent'] = content
|
mof.ipynb
ADDED
The diff for this file is too large to render.
See raw diff
|
|
mof.py
ADDED
@@ -0,0 +1,305 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import requests
|
2 |
+
import uuid
|
3 |
+
import time
|
4 |
+
import urllib.request
|
5 |
+
from lxml import etree
|
6 |
+
from googletrans import Translator
|
7 |
+
from transformers import pipeline
|
8 |
+
from PyPDF2 import PdfReader
|
9 |
+
analyzer = pipeline("sentiment-analysis", model="ProsusAI/finbert")
|
10 |
+
|
11 |
+
translator = Translator()
|
12 |
+
|
13 |
+
def datemodifier(date_string):
|
14 |
+
"""Date Modifier Function"""
|
15 |
+
try:
|
16 |
+
to_date = time.strptime(date_string,"%Y-%m-%d %H:%M:%S")
|
17 |
+
return time.strftime("%Y-%m-%d",to_date)
|
18 |
+
except:
|
19 |
+
return False
|
20 |
+
|
21 |
+
def fetch_url(url):
|
22 |
+
response = requests.get(url)
|
23 |
+
if response.status_code == 200:
|
24 |
+
return response.text
|
25 |
+
else:
|
26 |
+
return None
|
27 |
+
|
28 |
+
def translist(infolist):
|
29 |
+
"""Translist Function"""
|
30 |
+
out = list(filter(lambda s: s and
|
31 |
+
(isinstance (s,str) or len(s.strip()) > 0), [i.strip() for i in infolist]))
|
32 |
+
return out
|
33 |
+
|
34 |
+
def encode(content):
|
35 |
+
"""Encode Function"""
|
36 |
+
text = ''
|
37 |
+
for element in content:
|
38 |
+
if isinstance(element, etree._Element):
|
39 |
+
subelement = etree.tostring(element).decode()
|
40 |
+
subpage = etree.HTML(subelement)
|
41 |
+
tree = subpage.xpath('//text()')
|
42 |
+
line = ''.join(translist(tree)).\
|
43 |
+
replace('\n','').replace('\t','').replace('\r','').replace(' ','').strip()
|
44 |
+
else:
|
45 |
+
line = element
|
46 |
+
text += line
|
47 |
+
return text
|
48 |
+
|
49 |
+
def extract_from_pdf(url):
|
50 |
+
# Send a GET request to the URL and retrieve the PDF content
|
51 |
+
response = requests.get(url)
|
52 |
+
pdf_content = response.content
|
53 |
+
|
54 |
+
# Save the PDF content to a local file
|
55 |
+
with open("downloaded_file.pdf", "wb") as f:
|
56 |
+
f.write(pdf_content)
|
57 |
+
|
58 |
+
# Open the downloaded PDF file and extract the text
|
59 |
+
with open("downloaded_file.pdf", "rb") as f:
|
60 |
+
pdf_reader = PdfReader(f)
|
61 |
+
num_pages = len(pdf_reader.pages)
|
62 |
+
extracted_text = ""
|
63 |
+
extracted_text_eng = ""
|
64 |
+
for page in range(num_pages):
|
65 |
+
text = pdf_reader.pages[page].extract_text()
|
66 |
+
if text and text[0].isdigit():
|
67 |
+
text = text[1:]
|
68 |
+
first_newline_index = text.find('\n')
|
69 |
+
text = text[:first_newline_index+1].replace('\n', ' ') + text[first_newline_index+1:].replace('\n', '')
|
70 |
+
extracted_text_eng += translator.translate(text, dest='en').text
|
71 |
+
extracted_text += text
|
72 |
+
return extracted_text, extracted_text_eng
|
73 |
+
|
74 |
+
"""Upload file to dynamoDB"""
|
75 |
+
# import datetime
|
76 |
+
from datetime import datetime, timedelta
|
77 |
+
from decimal import Decimal
|
78 |
+
import boto3
|
79 |
+
|
80 |
+
AWS_ACCESS_KEY_ID = "AKIAQFXZMGHQYXKWUDWR"
|
81 |
+
AWS_SECRET_ACCESS_KEY = "D2A0IEVl5g3Ljbu0Y5iq9WuFETpDeoEpl69C+6xo"
|
82 |
+
|
83 |
+
print(AWS_ACCESS_KEY_ID, AWS_SECRET_ACCESS_KEY)
|
84 |
+
|
85 |
+
def get_db_connection():
|
86 |
+
"""Get dynamoDB connection"""
|
87 |
+
dynamodb = boto3.resource(
|
88 |
+
service_name='dynamodb',
|
89 |
+
region_name='us-east-1',
|
90 |
+
aws_access_key_id=AWS_ACCESS_KEY_ID,
|
91 |
+
aws_secret_access_key=AWS_SECRET_ACCESS_KEY
|
92 |
+
)
|
93 |
+
return dynamodb
|
94 |
+
|
95 |
+
def upsert_content(report):
|
96 |
+
"""Upsert the content records"""
|
97 |
+
dynamodb = get_db_connection()
|
98 |
+
table = dynamodb.Table('article_test')
|
99 |
+
# Define the item data
|
100 |
+
item = {
|
101 |
+
'id': str(report['id']),
|
102 |
+
'site': report['site'],
|
103 |
+
'title': report['title'],
|
104 |
+
'originalSite': report['originalSite'],
|
105 |
+
'originalTitle': report['originalTitle'],
|
106 |
+
'originalContent': report['originalContent'],
|
107 |
+
'category': report['category'],
|
108 |
+
# 'author': report['author'],
|
109 |
+
'content': report['content'],
|
110 |
+
'publishDate': report['publishDate'],
|
111 |
+
'link': report['url'],
|
112 |
+
# 'attachment': report['reporturl'],
|
113 |
+
# 'authorID': str(report['authorid']),
|
114 |
+
'sentimentScore': str(Decimal(report['sentimentScore']).quantize(Decimal('0.01'))),
|
115 |
+
'sentimentLabel': report['sentimentLabel'],
|
116 |
+
'LastModifiedDate': datetime.now().strftime("%Y-%m-%dT%H:%M:%S")
|
117 |
+
}
|
118 |
+
response = table.put_item(Item=item)
|
119 |
+
print(response)
|
120 |
+
|
121 |
+
reportList = []
|
122 |
+
categoryu_urls = ["https://www.mof.gov.cn/zhengwuxinxi/caizhengxinwen/"]
|
123 |
+
for categoryu_url in categoryu_urls:
|
124 |
+
req = urllib.request.urlopen(categoryu_url)
|
125 |
+
text = req.read()
|
126 |
+
html_text = text.decode("utf-8")
|
127 |
+
page = etree.HTML(html_text)
|
128 |
+
articlelist = page.xpath("//div[contains(@class, 'xwfb_listerji')]/ul/li[not(@class = 'clear')]")
|
129 |
+
for article in articlelist:
|
130 |
+
if isinstance(article, etree._Element):
|
131 |
+
subelement = etree.tostring(article).decode()
|
132 |
+
subpage = etree.HTML(subelement)
|
133 |
+
date = subpage.xpath("//span/text()")[0]
|
134 |
+
parsed_datetime = datetime.strptime(time.strftime("%Y-%m-%d", time.strptime(date,"%Y-%m-%d")), "%Y-%m-%d")
|
135 |
+
if parsed_datetime > (datetime.today() - timedelta(days=180)):
|
136 |
+
urls = subpage.xpath("//a[contains(@target, '_blank')]/@href")
|
137 |
+
for url in urls:
|
138 |
+
try:
|
139 |
+
print(url)
|
140 |
+
article = {}
|
141 |
+
url = url.replace("./", "https://www.mof.gov.cn/zhengwuxinxi/caizhengxinwen/")
|
142 |
+
req = urllib.request.urlopen(url)
|
143 |
+
text = req.read()
|
144 |
+
html_text = text.decode("utf-8")
|
145 |
+
page = etree.HTML(html_text)
|
146 |
+
article['originalContent'] = encode(page.xpath("//div[contains(@class, 'TRS_Editor')]//p"))
|
147 |
+
article['content'] = translator.translate(article['originalContent'], dest='en').text
|
148 |
+
article['site'] = "Ministry of Finance"
|
149 |
+
article['originalSite'] = "财政部"
|
150 |
+
article['originalTitle'] = page.xpath("//meta[@name = 'ArticleTitle']/@content")[0]
|
151 |
+
article['title'] = translator.translate(article['originalTitle'], dest='en').text
|
152 |
+
article['url'] = url
|
153 |
+
article['category']= "Finance News"
|
154 |
+
article['publishDate'] = datemodifier(page.xpath("//meta[@name = 'PubDate']/@content")[0])
|
155 |
+
article['id'] = uuid.uuid5(uuid.NAMESPACE_OID, article['title']+article['publishDate'])
|
156 |
+
label_dict = {
|
157 |
+
"positive": "+",
|
158 |
+
"negative": "-",
|
159 |
+
"neutral": "0",
|
160 |
+
}
|
161 |
+
sentiment_score = 0
|
162 |
+
maximum_value = 0
|
163 |
+
raw_sentiment = analyzer(article['content'][:512], return_all_scores=True)
|
164 |
+
sentiment_label = None
|
165 |
+
for sentiment_dict in raw_sentiment[0]:
|
166 |
+
value = sentiment_dict["score"]
|
167 |
+
if value > maximum_value:
|
168 |
+
sentiment_label = sentiment_dict["label"]
|
169 |
+
maximum_value = value
|
170 |
+
if sentiment_dict["label"] == "positive":
|
171 |
+
sentiment_score = sentiment_score + value
|
172 |
+
if sentiment_dict["label"] == "negative":
|
173 |
+
sentiment_score = sentiment_score - value
|
174 |
+
else:
|
175 |
+
sentiment_score = sentiment_score + 0
|
176 |
+
article['sentimentScore'] = sentiment_score
|
177 |
+
article['sentimentLabel'] = label_dict[sentiment_label]
|
178 |
+
print(article)
|
179 |
+
# upsert_content(article)
|
180 |
+
except Exception as error:
|
181 |
+
print(error)
|
182 |
+
|
183 |
+
reportList = []
|
184 |
+
categoryu_urls = ["https://www.mof.gov.cn/zhengwuxinxi/zhengcefabu/"]
|
185 |
+
for categoryu_url in categoryu_urls:
|
186 |
+
req = urllib.request.urlopen(categoryu_url)
|
187 |
+
text = req.read()
|
188 |
+
html_text = text.decode("utf-8")
|
189 |
+
page = etree.HTML(html_text)
|
190 |
+
articlelist = page.xpath("//div[contains(@class, 'xwfb_listerji')]/ul/li[not(@class = 'clear')]")
|
191 |
+
for article in articlelist:
|
192 |
+
if isinstance(article, etree._Element):
|
193 |
+
subelement = etree.tostring(article).decode()
|
194 |
+
subpage = etree.HTML(subelement)
|
195 |
+
date = subpage.xpath("//span/text()")[0]
|
196 |
+
parsed_datetime = datetime.strptime(time.strftime("%Y-%m-%d", time.strptime(date,"%Y-%m-%d")), "%Y-%m-%d")
|
197 |
+
if parsed_datetime > (datetime.today() - timedelta(days=180)):
|
198 |
+
urls = subpage.xpath("//a[contains(@target, '_blank')]/@href")
|
199 |
+
for url in urls:
|
200 |
+
try:
|
201 |
+
print(url)
|
202 |
+
article = {}
|
203 |
+
url = url.replace("./", categoryu_url)
|
204 |
+
req = urllib.request.urlopen(url)
|
205 |
+
text = req.read()
|
206 |
+
html_text = text.decode("utf-8")
|
207 |
+
page = etree.HTML(html_text)
|
208 |
+
article['originalContent'] = encode(page.xpath("//div[contains(@class, 'TRS_Editor')]//p"))
|
209 |
+
article['content'] = translator.translate(article['originalContent'], dest='en').text
|
210 |
+
article['site'] = "Ministry of Finance"
|
211 |
+
article['originalSite'] = "财政部"
|
212 |
+
article['originalTitle'] = page.xpath("//meta[@name = 'ArticleTitle']/@content")[0]
|
213 |
+
article['title'] = translator.translate(article['originalTitle'], dest='en').text
|
214 |
+
article['url'] = url
|
215 |
+
article['category']= "Policy Release"
|
216 |
+
article['publishDate'] = datemodifier(page.xpath("//meta[@name = 'PubDate']/@content")[0])
|
217 |
+
article['id'] = uuid.uuid5(uuid.NAMESPACE_OID, article['title']+article['publishDate'])
|
218 |
+
label_dict = {
|
219 |
+
"positive": "+",
|
220 |
+
"negative": "-",
|
221 |
+
"neutral": "0",
|
222 |
+
}
|
223 |
+
sentiment_score = 0
|
224 |
+
maximum_value = 0
|
225 |
+
raw_sentiment = analyzer(article['content'][:512], return_all_scores=True)
|
226 |
+
sentiment_label = None
|
227 |
+
for sentiment_dict in raw_sentiment[0]:
|
228 |
+
value = sentiment_dict["score"]
|
229 |
+
if value > maximum_value:
|
230 |
+
sentiment_label = sentiment_dict["label"]
|
231 |
+
maximum_value = value
|
232 |
+
if sentiment_dict["label"] == "positive":
|
233 |
+
sentiment_score = sentiment_score + value
|
234 |
+
if sentiment_dict["label"] == "negative":
|
235 |
+
sentiment_score = sentiment_score - value
|
236 |
+
else:
|
237 |
+
sentiment_score = sentiment_score + 0
|
238 |
+
article['sentimentScore'] = sentiment_score
|
239 |
+
article['sentimentLabel'] = label_dict[sentiment_label]
|
240 |
+
print(article)
|
241 |
+
# upsert_content(article)
|
242 |
+
except Exception as error:
|
243 |
+
print(error)
|
244 |
+
|
245 |
+
reportList = []
|
246 |
+
categoryu_urls = ["https://www.mof.gov.cn/zhengwuxinxi/zhengcejiedu/"]
|
247 |
+
for categoryu_url in categoryu_urls:
|
248 |
+
req = urllib.request.urlopen(categoryu_url)
|
249 |
+
text = req.read()
|
250 |
+
html_text = text.decode("utf-8")
|
251 |
+
page = etree.HTML(html_text)
|
252 |
+
articlelist = page.xpath("//div[contains(@class, 'xwfb_listerji')]/ul/li[not(@class = 'clear')]")
|
253 |
+
for article in articlelist:
|
254 |
+
if isinstance(article, etree._Element):
|
255 |
+
subelement = etree.tostring(article).decode()
|
256 |
+
subpage = etree.HTML(subelement)
|
257 |
+
date = subpage.xpath("//span/text()")[0]
|
258 |
+
parsed_datetime = datetime.strptime(time.strftime("%Y-%m-%d", time.strptime(date,"%Y-%m-%d")), "%Y-%m-%d")
|
259 |
+
if parsed_datetime > (datetime.today() - timedelta(days=180)):
|
260 |
+
urls = subpage.xpath("//a[contains(@target, '_blank')]/@href")
|
261 |
+
for url in urls:
|
262 |
+
try:
|
263 |
+
print(url)
|
264 |
+
article = {}
|
265 |
+
url = url.replace("./", categoryu_url)
|
266 |
+
req = urllib.request.urlopen(url)
|
267 |
+
text = req.read()
|
268 |
+
html_text = text.decode("utf-8")
|
269 |
+
page = etree.HTML(html_text)
|
270 |
+
article['originalContent'] = encode(page.xpath("//div[contains(@class, 'TRS_Editor')]//p"))
|
271 |
+
article['content'] = translator.translate(article['originalContent'], dest='en').text
|
272 |
+
article['site'] = "Ministry of Finance"
|
273 |
+
article['originalSite'] = "财政部"
|
274 |
+
article['originalTitle'] = page.xpath("//meta[@name = 'ArticleTitle']/@content")[0]
|
275 |
+
article['title'] = translator.translate(article['originalTitle'], dest='en').text
|
276 |
+
article['url'] = url
|
277 |
+
article['category']= "Policy Interpretation"
|
278 |
+
article['publishDate'] = datemodifier(page.xpath("//meta[@name = 'PubDate']/@content")[0])
|
279 |
+
article['id'] = uuid.uuid5(uuid.NAMESPACE_OID, article['title']+article['publishDate'])
|
280 |
+
label_dict = {
|
281 |
+
"positive": "+",
|
282 |
+
"negative": "-",
|
283 |
+
"neutral": "0",
|
284 |
+
}
|
285 |
+
sentiment_score = 0
|
286 |
+
maximum_value = 0
|
287 |
+
raw_sentiment = analyzer(article['content'][:512], return_all_scores=True)
|
288 |
+
sentiment_label = None
|
289 |
+
for sentiment_dict in raw_sentiment[0]:
|
290 |
+
value = sentiment_dict["score"]
|
291 |
+
if value > maximum_value:
|
292 |
+
sentiment_label = sentiment_dict["label"]
|
293 |
+
maximum_value = value
|
294 |
+
if sentiment_dict["label"] == "positive":
|
295 |
+
sentiment_score = sentiment_score + value
|
296 |
+
if sentiment_dict["label"] == "negative":
|
297 |
+
sentiment_score = sentiment_score - value
|
298 |
+
else:
|
299 |
+
sentiment_score = sentiment_score + 0
|
300 |
+
article['sentimentScore'] = sentiment_score
|
301 |
+
article['sentimentLabel'] = label_dict[sentiment_label]
|
302 |
+
print(article)
|
303 |
+
# upsert_content(article)
|
304 |
+
except Exception as error:
|
305 |
+
print(error)
|
ndrc.ipynb
ADDED
The diff for this file is too large to render.
See raw diff
|
|
ndrc.py
ADDED
@@ -0,0 +1,259 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import requests
|
2 |
+
import uuid
|
3 |
+
import time
|
4 |
+
import urllib.request
|
5 |
+
from lxml import etree
|
6 |
+
from googletrans import Translator
|
7 |
+
from transformers import pipeline
|
8 |
+
from PyPDF2 import PdfReader
|
9 |
+
analyzer = pipeline("sentiment-analysis", model="ProsusAI/finbert")
|
10 |
+
|
11 |
+
translator = Translator()
|
12 |
+
|
13 |
+
def datemodifier(date_string):
|
14 |
+
"""Date Modifier Function"""
|
15 |
+
try:
|
16 |
+
to_date = time.strptime(date_string,"%Y-%m-%d %H:%M:%S")
|
17 |
+
return time.strftime("%Y-%m-%d",to_date)
|
18 |
+
except:
|
19 |
+
return False
|
20 |
+
|
21 |
+
def fetch_url(url):
|
22 |
+
response = requests.get(url)
|
23 |
+
if response.status_code == 200:
|
24 |
+
return response.text
|
25 |
+
else:
|
26 |
+
return None
|
27 |
+
|
28 |
+
def translist(infolist):
|
29 |
+
"""Translist Function"""
|
30 |
+
out = list(filter(lambda s: s and
|
31 |
+
(isinstance (s,str) or len(s.strip()) > 0), [i.strip() for i in infolist]))
|
32 |
+
return out
|
33 |
+
|
34 |
+
def encode(content):
|
35 |
+
"""Encode Function"""
|
36 |
+
text = ''
|
37 |
+
for element in content:
|
38 |
+
if isinstance(element, etree._Element):
|
39 |
+
subelement = etree.tostring(element).decode()
|
40 |
+
subpage = etree.HTML(subelement)
|
41 |
+
tree = subpage.xpath('//text()')
|
42 |
+
line = ''.join(translist(tree)).\
|
43 |
+
replace('\n','').replace('\t','').replace('\r','').replace(' ','').strip()
|
44 |
+
else:
|
45 |
+
line = element
|
46 |
+
text += line
|
47 |
+
return text
|
48 |
+
|
49 |
+
def extract_from_pdf(url):
|
50 |
+
# Send a GET request to the URL and retrieve the PDF content
|
51 |
+
response = requests.get(url)
|
52 |
+
pdf_content = response.content
|
53 |
+
|
54 |
+
# Save the PDF content to a local file
|
55 |
+
with open("downloaded_file.pdf", "wb") as f:
|
56 |
+
f.write(pdf_content)
|
57 |
+
|
58 |
+
# Open the downloaded PDF file and extract the text
|
59 |
+
with open("downloaded_file.pdf", "rb") as f:
|
60 |
+
pdf_reader = PdfReader(f)
|
61 |
+
num_pages = len(pdf_reader.pages)
|
62 |
+
extracted_text = ""
|
63 |
+
extracted_text_eng = ""
|
64 |
+
for page in range(num_pages):
|
65 |
+
text = pdf_reader.pages[page].extract_text()
|
66 |
+
if text and text[0].isdigit():
|
67 |
+
text = text[1:]
|
68 |
+
first_newline_index = text.find('\n')
|
69 |
+
text = text[:first_newline_index+1].replace('\n', ' ') + text[first_newline_index+1:].replace('\n', '')
|
70 |
+
extracted_text_eng += translator.translate(text, dest='en').text
|
71 |
+
extracted_text += text
|
72 |
+
return extracted_text, extracted_text_eng
|
73 |
+
|
74 |
+
"""Upload file to dynamoDB"""
|
75 |
+
# import datetime
|
76 |
+
from datetime import datetime, timedelta
|
77 |
+
from decimal import Decimal
|
78 |
+
import boto3
|
79 |
+
|
80 |
+
AWS_ACCESS_KEY_ID = "AKIAQFXZMGHQYXKWUDWR"
|
81 |
+
AWS_SECRET_ACCESS_KEY = "D2A0IEVl5g3Ljbu0Y5iq9WuFETpDeoEpl69C+6xo"
|
82 |
+
|
83 |
+
print(AWS_ACCESS_KEY_ID, AWS_SECRET_ACCESS_KEY)
|
84 |
+
|
85 |
+
def get_db_connection():
|
86 |
+
"""Get dynamoDB connection"""
|
87 |
+
dynamodb = boto3.resource(
|
88 |
+
service_name='dynamodb',
|
89 |
+
region_name='us-east-1',
|
90 |
+
aws_access_key_id=AWS_ACCESS_KEY_ID,
|
91 |
+
aws_secret_access_key=AWS_SECRET_ACCESS_KEY
|
92 |
+
)
|
93 |
+
return dynamodb
|
94 |
+
|
95 |
+
def upsert_content(report):
|
96 |
+
"""Upsert the content records"""
|
97 |
+
dynamodb = get_db_connection()
|
98 |
+
table = dynamodb.Table('article_test')
|
99 |
+
# Define the item data
|
100 |
+
item = {
|
101 |
+
'id': str(report['id']),
|
102 |
+
'site': report['site'],
|
103 |
+
'title': report['title'],
|
104 |
+
'originalSite': report['originalSite'],
|
105 |
+
'originalTitle': report['originalTitle'],
|
106 |
+
'originalContent': report['originalContent'],
|
107 |
+
'category': report['category'],
|
108 |
+
# 'author': report['author'],
|
109 |
+
'content': report['content'],
|
110 |
+
'publishDate': report['publishDate'],
|
111 |
+
'link': report['url'],
|
112 |
+
# 'attachment': report['reporturl'],
|
113 |
+
# 'authorID': str(report['authorid']),
|
114 |
+
'sentimentScore': str(Decimal(report['sentimentScore']).quantize(Decimal('0.01'))),
|
115 |
+
'sentimentLabel': report['sentimentLabel'],
|
116 |
+
'LastModifiedDate': datetime.now().strftime("%Y-%m-%dT%H:%M:%S")
|
117 |
+
}
|
118 |
+
response = table.put_item(Item=item)
|
119 |
+
print(response)
|
120 |
+
|
121 |
+
reportList = []
|
122 |
+
categoryu_urls = ["https://www.ndrc.gov.cn/xxgk/zcfb/fzggwl/", "https://www.ndrc.gov.cn/xxgk/zcfb/ghxwj/","https://www.ndrc.gov.cn/xxgk/zcfb/ghwb/","https://www.ndrc.gov.cn/xxgk/zcfb/gg/","https://www.ndrc.gov.cn/xxgk/zcfb/tz/","https://www.ndrc.gov.cn/xxgk/zcfb/pifu/","https://www.ndrc.gov.cn/xxgk/zcfb/qt/"]
|
123 |
+
for categoryu_url in categoryu_urls:
|
124 |
+
req = urllib.request.urlopen(categoryu_url)
|
125 |
+
text = req.read()
|
126 |
+
html_text = text.decode("utf-8")
|
127 |
+
page = etree.HTML(html_text)
|
128 |
+
articlelist = page.xpath("//div[contains(@class, 'list')]/ul/li[not(@class = 'empty')]")
|
129 |
+
for article in articlelist:
|
130 |
+
if isinstance(article, etree._Element):
|
131 |
+
subelement = etree.tostring(article).decode()
|
132 |
+
subpage = etree.HTML(subelement)
|
133 |
+
date = subpage.xpath("//span/text()")[0]
|
134 |
+
parsed_datetime = datetime.strptime(time.strftime("%Y-%m-%d", time.strptime(date,"%Y/%m/%d")), "%Y-%m-%d")
|
135 |
+
if parsed_datetime > (datetime.today() - timedelta(days=180)):
|
136 |
+
urls = subpage.xpath("//a[contains(@target, '_blank')]/@href")
|
137 |
+
for url in urls:
|
138 |
+
try:
|
139 |
+
article = {}
|
140 |
+
if "/jd/jd" in url:
|
141 |
+
url = url.replace("../../", "https://www.ndrc.gov.cn/xxgk/")
|
142 |
+
else:
|
143 |
+
url = url.replace("./", categoryu_url)
|
144 |
+
print(url)
|
145 |
+
req = urllib.request.urlopen(url)
|
146 |
+
text = req.read()
|
147 |
+
html_text = text.decode("utf-8")
|
148 |
+
page = etree.HTML(html_text)
|
149 |
+
attachment_urls = page.xpath("//div[contains(@class, 'attachment_r')]//a/@href")
|
150 |
+
for attachment_url in attachment_urls:
|
151 |
+
if ".pdf" in attachment_url:
|
152 |
+
pdf_url = url.rsplit('/', 1)[0] + attachment_url.replace('./','/')
|
153 |
+
pdf_content, extracted_text_eng = extract_from_pdf(pdf_url)
|
154 |
+
article['content'] = extracted_text_eng
|
155 |
+
article['originalContent'] = pdf_content
|
156 |
+
article['site'] = "National Development and Reform Commission"
|
157 |
+
article['originalSite'] = "国家发展和改革委员会"
|
158 |
+
article['originalTitle'] = page.xpath("//meta[@name = 'ArticleTitle']/@content")[0]
|
159 |
+
article['title'] = translator.translate(article['originalTitle'], dest='en').text
|
160 |
+
article['url'] = url
|
161 |
+
article['category']= "Policy Release"
|
162 |
+
article['publishDate'] = datemodifier(page.xpath("//meta[@name = 'PubDate']/@content")[0])
|
163 |
+
article['id'] = uuid.uuid5(uuid.NAMESPACE_OID, article['title']+article['publishDate'])
|
164 |
+
label_dict = {
|
165 |
+
"positive": "+",
|
166 |
+
"negative": "-",
|
167 |
+
"neutral": "0",
|
168 |
+
}
|
169 |
+
sentiment_score = 0
|
170 |
+
maximum_value = 0
|
171 |
+
raw_sentiment = analyzer(article['content'][:512], return_all_scores=True)
|
172 |
+
sentiment_label = None
|
173 |
+
for sentiment_dict in raw_sentiment[0]:
|
174 |
+
value = sentiment_dict["score"]
|
175 |
+
if value > maximum_value:
|
176 |
+
sentiment_label = sentiment_dict["label"]
|
177 |
+
maximum_value = value
|
178 |
+
if sentiment_dict["label"] == "positive":
|
179 |
+
sentiment_score = sentiment_score + value
|
180 |
+
if sentiment_dict["label"] == "negative":
|
181 |
+
sentiment_score = sentiment_score - value
|
182 |
+
else:
|
183 |
+
sentiment_score = sentiment_score + 0
|
184 |
+
article['sentimentScore'] = sentiment_score
|
185 |
+
article['sentimentLabel'] = label_dict[sentiment_label]
|
186 |
+
print(article)
|
187 |
+
upsert_content(article)
|
188 |
+
except Exception as error:
|
189 |
+
print(error)
|
190 |
+
|
191 |
+
reportList = []
|
192 |
+
categoryu_urls = ["https://www.ndrc.gov.cn/xxgk/jd/jd/index.html"]
|
193 |
+
for categoryu_url in categoryu_urls:
|
194 |
+
req = urllib.request.urlopen(categoryu_url)
|
195 |
+
text = req.read()
|
196 |
+
html_text = text.decode("utf-8")
|
197 |
+
page = etree.HTML(html_text)
|
198 |
+
articlelist = page.xpath("//div[contains(@class, 'list')]/ul/li[not(@class = 'empty')]")
|
199 |
+
for article in articlelist:
|
200 |
+
if isinstance(article, etree._Element):
|
201 |
+
subelement = etree.tostring(article).decode()
|
202 |
+
subpage = etree.HTML(subelement)
|
203 |
+
date = subpage.xpath("//span/text()")[0]
|
204 |
+
parsed_datetime = datetime.strptime(time.strftime("%Y-%m-%d", time.strptime(date,"%Y/%m/%d")), "%Y-%m-%d")
|
205 |
+
if parsed_datetime > (datetime.today() - timedelta(days=180)):
|
206 |
+
urls = subpage.xpath("//a[contains(@target, '_blank')]/@href")
|
207 |
+
for url in urls:
|
208 |
+
try:
|
209 |
+
print(url)
|
210 |
+
article = {}
|
211 |
+
url = url.replace("../../", "https://www.ndrc.gov.cn/xxgk/jd/jd/")
|
212 |
+
url = url.replace("./", "https://www.ndrc.gov.cn/xxgk/jd/jd/")
|
213 |
+
print(url)
|
214 |
+
req = urllib.request.urlopen(url)
|
215 |
+
text = req.read()
|
216 |
+
html_text = text.decode("utf-8")
|
217 |
+
page = etree.HTML(html_text)
|
218 |
+
article['originalContent'] = encode(page.xpath("//div[contains(@class, 'TRS_Editor')]//p"))
|
219 |
+
split_text = article['originalContent'].split("。")
|
220 |
+
half_length = len(split_text) // 2
|
221 |
+
part1 = "。".join(split_text[:half_length])
|
222 |
+
part2 = "。".join(split_text[half_length:])
|
223 |
+
article['content'] = translator.translate(part1, dest='en').text + translator.translate(part2, dest='en').text
|
224 |
+
print(len(article['originalContent']),article['content'])
|
225 |
+
article['site'] = "National Development and Reform Commission"
|
226 |
+
article['originalSite'] = "国家发展和改革委员会"
|
227 |
+
article['originalTitle'] = page.xpath("//meta[@name = 'ArticleTitle']/@content")[0]
|
228 |
+
article['title'] = translator.translate(article['originalTitle'], dest='en').text
|
229 |
+
article['url'] = url
|
230 |
+
article['category']= "Policy Interpretation"
|
231 |
+
article['publishDate'] = datemodifier(page.xpath("//meta[@name = 'PubDate']/@content")[0])
|
232 |
+
article['id'] = uuid.uuid5(uuid.NAMESPACE_OID, article['title']+article['publishDate'])
|
233 |
+
label_dict = {
|
234 |
+
"positive": "+",
|
235 |
+
"negative": "-",
|
236 |
+
"neutral": "0",
|
237 |
+
}
|
238 |
+
sentiment_score = 0
|
239 |
+
maximum_value = 0
|
240 |
+
raw_sentiment = analyzer(article['content'][:512], return_all_scores=True)
|
241 |
+
sentiment_label = None
|
242 |
+
for sentiment_dict in raw_sentiment[0]:
|
243 |
+
value = sentiment_dict["score"]
|
244 |
+
if value > maximum_value:
|
245 |
+
sentiment_label = sentiment_dict["label"]
|
246 |
+
maximum_value = value
|
247 |
+
if sentiment_dict["label"] == "positive":
|
248 |
+
sentiment_score = sentiment_score + value
|
249 |
+
if sentiment_dict["label"] == "negative":
|
250 |
+
sentiment_score = sentiment_score - value
|
251 |
+
else:
|
252 |
+
sentiment_score = sentiment_score + 0
|
253 |
+
article['sentimentScore'] = sentiment_score
|
254 |
+
article['sentimentLabel'] = label_dict[sentiment_label]
|
255 |
+
print(article)
|
256 |
+
upsert_content(article)
|
257 |
+
except Exception as error:
|
258 |
+
print(error)
|
259 |
+
|
requirements.txt
CHANGED
@@ -21,3 +21,4 @@ s3transfer==0.10.0
|
|
21 |
six==1.16.0
|
22 |
sniffio==1.3.1
|
23 |
urllib3==2.0.7
|
|
|
|
21 |
six==1.16.0
|
22 |
sniffio==1.3.1
|
23 |
urllib3==2.0.7
|
24 |
+
PyPDF2
|
sample.csv
DELETED
The diff for this file is too large to render.
See raw diff
|
|