File size: 24,139 Bytes
39fe3d1
bdad171
8925fd4
046bb22
 
4a8b338
8925fd4
046bb22
 
8925fd4
4a8b338
8925fd4
4a8b338
 
 
8107bcc
4a8b338
 
 
98d9fcd
4a8b338
b69e69a
 
 
a6b6592
b69e69a
 
4a8b338
 
 
 
 
046bb22
 
 
93e74f7
8925fd4
 
 
39fe3d1
 
 
 
 
8925fd4
 
 
 
 
 
 
 
 
39fe3d1
 
 
 
 
 
 
 
 
8925fd4
 
 
 
 
93e74f7
8925fd4
 
 
 
 
 
 
 
 
 
fa7a873
 
 
39fe3d1
fa7a873
 
39fe3d1
fa7a873
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8925fd4
 
39fe3d1
 
 
 
 
 
 
 
 
 
 
 
 
 
8925fd4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
39fe3d1
 
 
 
 
 
 
 
 
 
8925fd4
 
 
39fe3d1
 
 
 
 
 
 
 
 
 
8925fd4
 
 
 
 
 
39fe3d1
 
 
 
 
 
 
 
 
fba27b9
 
 
 
 
 
 
 
 
 
 
d860eae
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fba27b9
 
8925fd4
4a8b338
39fe3d1
 
 
 
 
 
 
 
 
4a8b338
 
 
39fe3d1
 
 
 
 
 
 
 
 
 
 
 
 
4a8b338
 
 
 
 
 
 
39fe3d1
 
 
 
 
 
 
 
 
 
 
8f28fc9
39fe3d1
8f28fc9
 
 
 
 
 
 
 
4a8b338
 
 
39fe3d1
 
 
 
 
 
 
 
 
4a8b338
39fe3d1
4a8b338
 
 
39fe3d1
 
 
 
 
 
 
 
 
 
b6dcee5
 
 
 
 
 
 
 
 
 
 
 
 
 
39fe3d1
 
 
 
 
 
 
 
 
 
4a8b338
71e720e
4a8b338
 
 
 
 
 
 
 
d83e215
8925fd4
 
4a8b338
d83e215
8925fd4
d83e215
8925fd4
d83e215
8925fd4
b2a3d45
4a8b338
 
39fe3d1
 
 
 
 
 
 
 
 
 
 
 
4a8b338
8925fd4
4a8b338
 
 
8925fd4
 
4a8b338
 
8925fd4
 
4a8b338
 
 
 
 
 
422b41b
 
 
 
 
42ba1cc
 
 
 
 
4a8b338
 
39fe3d1
 
 
 
 
4a8b338
39fe3d1
 
 
 
4a8b338
 
 
 
39fe3d1
 
 
 
 
 
 
 
 
 
4a8b338
 
 
 
 
 
 
52bf3e0
4a8b338
b6dcee5
4a8b338
 
 
 
 
 
 
 
 
 
78bfbaa
4a8b338
 
046bb22
39fe3d1
 
 
 
 
 
 
 
 
 
 
 
 
 
42ba1cc
046bb22
 
 
 
42ba1cc
 
 
 
 
 
 
 
 
d83e215
42ba1cc
046bb22
 
42ba1cc
046bb22
98d9fcd
 
 
d83e215
42ba1cc
 
 
 
 
046bb22
 
42ba1cc
cd41775
b37fb00
6c8a470
046bb22
4a8b338
39fe3d1
 
 
 
 
 
 
 
 
4a8b338
d0ddd7b
39fe3d1
4a8b338
 
 
 
42ba1cc
 
4a8b338
b6dcee5
4a8b338
046bb22
b6dcee5
b2a3d45
b6dcee5
4a8b338
b6dcee5
 
 
046bb22
4a8b338
 
1580b60
b2a3d45
 
39fe3d1
 
 
 
 
 
 
 
 
8925fd4
 
39fe3d1
 
 
 
 
 
b2a3d45
 
39fe3d1
 
 
 
 
 
 
 
 
6c8a470
 
39fe3d1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6c8a470
 
 
39fe3d1
 
 
 
 
 
 
 
 
046bb22
 
 
 
 
 
 
 
 
 
 
 
 
 
53fd7dd
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
"""Module to define utility function"""
import os
import re
import json
import uuid
import time
import glob
import urllib.request
from urllib.parse import urlparse
from datetime import datetime, timedelta
from decimal import Decimal
import pandas as pd
import requests
import boto3
from lxml import etree
from dotenv import load_dotenv
from googletrans import Translator
from transformers import pipeline
from PyPDF2 import PdfReader
from langdetect import detect

load_dotenv()
AWS_ACCESS_KEY_ID = os.environ['AWS_ACCESS_KEY_ID']
AWS_SECRET_ACCESS_KEY = os.environ['AWS_SECRET_ACCESS_KEY']

# AWS_ACCESS_KEY_ID = "AKIAQFXZMGHQYXKWUDWR"
# AWS_SECRET_ACCESS_KEY = "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"

analyzer = pipeline("sentiment-analysis", model="ProsusAI/finbert")

translator = Translator()

with open('xpath.json', 'r', encoding='UTF-8') as f:
    xpath_dict = json.load(f)

with open('patterns.json', 'r', encoding='UTF-8') as f:
    patterns = json.load(f)

def get_client_connection():
    """
    Returns a client connection to DynamoDB.

    :return: DynamoDB client connection
    """
    dynamodb = boto3.client(
        service_name='dynamodb',
        region_name='us-east-1',
        aws_access_key_id=AWS_ACCESS_KEY_ID,
        aws_secret_access_key=AWS_SECRET_ACCESS_KEY
    )
    return dynamodb

def update_reference(report):
    """
    Updates the reference in the 'reference_china' table in DynamoDB.

    Args:
        report (dict): A dictionary containing the report details.

    Returns:
        None
    """
    dynamodb = get_client_connection()
    response = dynamodb.update_item(
                TableName="reference_china",
                Key={
                    'id': {'S': str(report['refID'])},
                    'sourceID': {'S': str(report['sourceID'])}
                },
                UpdateExpression='SET link = :link, referenceID = :referenceID, LastModifiedDate = :LastModifiedDate',
                ExpressionAttributeValues={
                    ':link': {'S': report['link']},
                    ':referenceID': {'S': report['referenceID']},
                    ':LastModifiedDate': {'S': datetime.now().strftime("%Y-%m-%dT%H:%M:%S")},
                }
            )
    print(response)

def download_files_from_s3(folder):
    """
    Downloads Parquet files from an S3 bucket and returns a concatenated DataFrame.

    Args:
        folder (str): The folder in the S3 bucket to download files from.

    Returns:
        pandas.DataFrame: A concatenated DataFrame containing the data from the downloaded Parquet files.
    """
    if not os.path.exists(folder):
        os.makedirs(folder)
    client = boto3.client(
        's3',
        aws_access_key_id=AWS_ACCESS_KEY_ID,
        aws_secret_access_key=AWS_SECRET_ACCESS_KEY,
    )
    response = client.list_objects_v2(Bucket='china-securities-report', Prefix=f"{folder}/")
    for obj in response['Contents']:
        key = obj['Key']
        if key.endswith('.parquet'):
            client.download_file('china-securities-report', key, key)
    file_paths = glob.glob(os.path.join(folder, '*.parquet'))
    return pd.concat([pd.read_parquet(file_path) for file_path in file_paths], ignore_index=True)

def extract_from_pdf_by_pattern(url, pattern):
    """
    Extracts text from a PDF file based on a given pattern.

    Args:
        url (str): The URL of the PDF file to extract text from.
        pattern (dict): A dictionary containing the pattern to match and the pages to extract text from.

    Returns:
        str: The extracted text from the PDF file.

    Raises:
        Exception: If there is an error while retrieving or processing the PDF file.

    """
    # Send a GET request to the URL and retrieve the PDF content
    try:
        response = requests.get(url, timeout=60)
        pdf_content = response.content
        # Save the PDF content to a local file
        with open("downloaded_file.pdf", "wb") as file:
            file.write(pdf_content)

        # Open the downloaded PDF file and extract the text
        with open("downloaded_file.pdf", "rb") as file:
            pdf_reader = PdfReader(file)
            extracted_text = ""
            if 'pages' in pattern:
                pages = pattern['pages']
            else:
                pages = len(pdf_reader.pages)
            for page in pages:
                text = pdf_reader.pages[page].extract_text()
                if 'keyword' in pattern and pattern['keyword'] in text:
                    text = text.split(pattern['keyword'], 1)[1].strip()
                else:
                    text = text.strip()
                extracted_text += text
    except:
        extracted_text = ''
    return extracted_text.replace('?\n', '?-\n').replace('!\n', '!-\n').replace('。\n', '。-\n').replace('\n',' ').replace('?-','?\n').replace('!-','!\n').replace('。-','。\n')

def get_reference_by_regex(pattern, text):
    """
    Finds all occurrences of a given regex pattern in the provided text.

    Args:
        pattern (str): The regex pattern to search for.
        text (str): The text to search within.

    Returns:
        list: A list of all matches found in the text.
    """
    return re.findall(pattern, text)

def isnot_substring(list_a, string_to_check):
    """
    Check if any string in the given list is a substring of the string_to_check.

    Args:
        list_a (list): A list of strings to check.
        string_to_check (str): The string to check for substrings.

    Returns:
        bool: True if none of the strings in list_a are substrings of string_to_check, False otherwise.
    """
    for s in list_a:
        if s in string_to_check:
            return False
    return True

def extract_reference(row):
    """
    Extracts reference information from a given row.

    Args:
        row (dict): A dictionary representing a row of data.

    Returns:
        None
    """
    try:
        pattern = next((elem for elem in patterns if elem['site'] == row['site']), None)
        extracted_text = extract_from_pdf_by_pattern(row['attachment'],pattern)
        reference_titles = re.findall(pattern['article_regex'], extracted_text)
        reference_dates = re.findall(pattern['date_regex'], extracted_text)
        reference_titles = [s.replace(' ', '') for s in reference_titles]
        reference_dates = [s.replace(' ', '') for s in reference_dates]
        print(reference_dates, reference_titles)
        if 'remove' in pattern:
            for remove_string in pattern['remove']:
                reference_titles = [s.replace(remove_string, '') for s in reference_titles]
        if len(reference_dates) > 0:
            for title, date in zip(reference_titles, reference_dates):
                try:
                    date = datetime.strptime(date, pattern['date_format'])
                except:
                    date = datetime(2006, 1, 1)
                dates = []
                if 'date_range' in pattern:
                    for i in range(pattern['date_range'] + 1):
                        dates.append((date + timedelta(days=i)).strftime('%Y-%m-%d'))
                        dates.append((date - timedelta(days=i)).strftime('%Y-%m-%d'))
                dates.append(date.strftime('%Y-%m-%d'))
                date = date.strftime('%Y-%m-%d')
                if 'split' in pattern:
                    for split_item in pattern['split']:
                        if 'exceptional_string' in split_item:
                            if split_item['string'] in title and isnot_substring(split_item['exceptional_string'], title):
                                title = re.split(split_item['string'], title)[split_item['index']]
                        else:
                            if split_item['string'] in title:
                                title = title.split(split_item['string'])[split_item['index']]
                if len(data[(data['titleCN'].str.contains(title)) & (data['site'] == row['site']) & (data['publishdate'].isin(dates))]) == 0:
                    print("------------ = 0 ------------")
                    print(date, repr(title))
                elif len(data[(data['titleCN'].str.contains(title)) & (data['site'] == row['site']) & (data['publishdate'].isin(dates))]) > 1:
                    print("------------ > 1 ------------")
                    print(date, repr(title))
                else:
                    print("------------ = 1 ------------")
                    reference_df = data[(data['titleCN'].str.contains(title)) & (data['site'] == row['site']) & (data['publishdate'].isin(dates))]
                    row['referenceID'] = reference_df.iloc[0]['id']
                    row['link'] = reference_df.iloc[0]['link']
                    row['sourceID'] = row['id']
                    row['refID'] = uuid.uuid5(uuid.NAMESPACE_OID, str(row['sourceID'])+str(row['referenceID']))
                    print(date, repr(title), row['sourceID'],row['referenceID'])
                    update_reference(row)
        else:
            for title in reference_titles:
                if 'split' in pattern:
                    for split_item in pattern['split']:
                        if 'exceptional_string' in split_item:
                            if split_item['string'] in title and isnot_substring(split_item['exceptional_string'], title):
                                title = re.split(split_item['string'], title)[split_item['index']]
                        else:
                            if split_item['string'] in title:
                                title = title.split(split_item['string'])[split_item['index']]
                if len(data[(data['titleCN'].str.contains(title)) & (data['site'] == row['site'])]) == 0:
                    print("------------ = 0 ------------")
                    print(repr(title))
                elif len(data[(data['titleCN'].str.contains(title)) & (data['site'] == row['site'])]) > 1:
                    print("------------ > 1 ------------")
                    print(repr(title))
                else:
                    print("------------ = 1 ------------")
                    reference_df = data[(data['titleCN'].str.contains(title)) & (data['site'] == row['site'])]
                    row['referenceID'] = reference_df.iloc[0]['id']
                    row['link'] = reference_df.iloc[0]['link']
                    row['sourceID'] = row['id']
                    row['refID'] = uuid.uuid5(uuid.NAMESPACE_OID, str(row['sourceID'])+str(row['referenceID']))
                    print(repr(title), row['sourceID'],row['referenceID'])
                    update_reference(row)
    except Exception as error:
        print(error)

def translate(text):
    """
    Translates the given text to English.

    Args:
        text (str): The text to be translated.

    Returns:
        str: The translated text in English.
    """
    return translator.translate(text, dest='en').text

def datemodifier(date_string, date_format):
    """Date Modifier Function
    
    This function takes a date string and a date format as input and modifies the date string
    according to the specified format. It returns the modified date string in the format 'YYYY-MM-DD'.
    
    Args:
        date_string (str): The date string to be modified.
        date_format (str): The format of the date string.
        
    Returns:
        str: The modified date string in the format 'YYYY-MM-DD'.
        False: If an error occurs during the modification process.
    """
    try:
        to_date = time.strptime(date_string,date_format)
        return time.strftime("%Y-%m-%d",to_date)
    except:
        return False

def fetch_url(url):
    """
    Fetches the content of a given URL.

    Args:
        url (str): The URL to fetch.

    Returns:
        str or None: The content of the URL if the request is successful (status code 200),
        otherwise None.

    Raises:
        requests.exceptions.RequestException: If there is an error while making the request or if the response status code is not 200.
    """
    try:
        response = requests.get(url, timeout=60)
        if response.status_code == 200:
            return response.text
        else:
            return None
    except requests.exceptions.RequestException or requests.exceptions.ReadTimeout as e:
        print(f"An error occurred: {e}")  # Optional: handle or log the error in some way
        return None

def translist(infolist):
    """
    Filter and transform a list of strings.

    Args:
        infolist (list): The input list of strings.

    Returns:
        list: The filtered and transformed list of strings.
    """
    out = list(filter(lambda s: s and
                      (isinstance(s, str) or len(s.strip()) > 0), [i.strip() for i in infolist]))
    return out

def encode(content):
    """
    Encodes the given content into a single string.

    Args:
        content (list): A list of elements to be encoded. Each element can be either a string or an `etree._Element` object.

    Returns:
        str: The encoded content as a single string.

    """
    text = ''
    for element in content:
        if isinstance(element, etree._Element):
            subelement = etree.tostring(element).decode()
            subpage = etree.HTML(subelement)
            tree = subpage.xpath('//text()')
            line = ''.join(translist(tree)).\
                replace('\n','').replace('\t','').replace('\r','').replace('  ','').strip()
        else:
            line = element
        text += line
    return text

def encode_content(content):
    """
    Encodes the content by removing unnecessary characters and extracting a summary.

    Args:
        content (list): A list of elements representing the content.

    Returns:
        tuple: A tuple containing the encoded text and the summary.

    """
    text = ''
    for element in content:
        if isinstance(element, etree._Element):
            subelement = etree.tostring(element).decode()
            subpage = etree.HTML(subelement)
            tree = subpage.xpath('//text()')
            line = ''.join(translist(tree)).\
                replace('\n','').replace('\t','').replace('\r','').replace('  ','').strip()
        else:
            line = element
        if line != '':
            line = line + '\n'
            text += line
        index = text.find('打印本页')
    if index != -1:
        text = text[:index]
    try:
        summary = '\n'.join(text.split('\n')[:2])
    except:
        summary = text
    return text, summary

def extract_from_pdf(url):
    """
    Extracts text from a PDF file given its URL.

    Args:
        url (str): The URL of the PDF file.

    Returns:
        tuple: A tuple containing the extracted text and a summary of the text.

    Raises:
        Exception: If there is an error during the extraction process.
    """
    # Send a GET request to the URL and retrieve the PDF content
    response = requests.get(url, timeout=60)
    pdf_content = response.content

    # Save the PDF content to a local file
    with open("downloaded_file.pdf", "wb") as file:
        file.write(pdf_content)

    # Open the downloaded PDF file and extract the text
    with open("downloaded_file.pdf", "rb") as file:
        pdf_reader = PdfReader(file)
        num_pages = len(pdf_reader.pages)
        extracted_text = ""
        for page in range(num_pages):
            text = pdf_reader.pages[page].extract_text()
            if text and text[0].isdigit():
                text = text[1:]
            # first_newline_index = text.find('。\n')
            # text = text[:first_newline_index+1].replace('\n', '') + text[first_newline_index+1:]
            text = text.replace('?\n', '?-\n').replace('!\n', '!-\n').replace('。\n', '。-\n').replace('\n','').replace('?-','?\n').replace('!-','!\n').replace('。-','。\n')
            if text != '':
                extracted_text += text
        try:
            summary = '\n'.join(extracted_text.split('\n')[:2])
        except:
            summary = text
    return extracted_text, summary

def get_db_connection():
    """Get dynamoDB connection.

    Returns:
        boto3.resource: The DynamoDB resource object representing the connection.
    """
    dynamodb = boto3.resource(
        service_name='dynamodb',
        region_name='us-east-1',
        aws_access_key_id=AWS_ACCESS_KEY_ID,
        aws_secret_access_key=AWS_SECRET_ACCESS_KEY
    )
    return dynamodb

def sentiment_computation(content):
    """
    Compute the sentiment score and label for the given content.

    Parameters:
    content (str): The content for which sentiment needs to be computed.

    Returns:
    tuple: A tuple containing the sentiment score and label. The sentiment score is a float representing the overall sentiment score of the content. The sentiment label is a string representing the sentiment label ('+', '-', or '0').

    """
    label_dict = {
        "positive": "+",
        "negative": "-",
        "neutral": "0",
    }
    sentiment_score = 0
    maximum_value = 0
    raw_sentiment = analyzer(content[:511], top_k=None)
    sentiment_label = None
    for sentiment_dict in raw_sentiment:
        value = sentiment_dict["score"]
        if value > maximum_value:
            sentiment_label = sentiment_dict["label"]
            maximum_value = value
        if sentiment_dict["label"] == "positive":
            sentiment_score = sentiment_score + value
        if sentiment_dict["label"] == "negative":
            sentiment_score = sentiment_score - value
        else:
            sentiment_score = sentiment_score + 0
    sentiment_score = sentiment_score * 100
    return sentiment_score, label_dict[sentiment_label]

def crawl(url, article):
    """
    Crawls the given URL and extracts relevant information from the webpage.

    Args:
        url (str): The URL of the webpage to crawl.
        article (dict): A dictionary to store the extracted information.

    Returns:
        None: If the length of the extracted content is less than 10 characters.

    Raises:
        None

    """
    domain = '.'.join(urlparse(url).netloc.split('.')[1:])
    req = urllib.request.urlopen(url)
    text = req.read()
    html_text = text.decode("utf-8")
    page = etree.HTML(html_text)
    contentCN, summary  = encode_content(page.xpath(xpath_dict[domain]['content']))
    article['originSite'] = xpath_dict[domain]['siteCN']
    article['site'] = xpath_dict[domain]['site']
    article['titleCN'] = encode(page.xpath(xpath_dict[domain]['title']))
    article['title'] = translate(article['titleCN'])
    if 'author' in xpath_dict[domain]:
        article['author'] = translate(encode(page.xpath(xpath_dict[domain]['author'])))
    else:
        article['author'] = ""
    article['contentCN'] = repr(contentCN)[1:-1].strip()
    if len(article['contentCN']) < 10:
        return None
    CONTENT_ENG = ''
    for element in contentCN.split("\n"):
        CONTENT_ENG += translate(element) + '\n'
    if detect(CONTENT_ENG) != 'en':
        for element in contentCN.split("。"):
            CONTENT_ENG += translate(element) + '. '
    article['content'] = repr(CONTENT_ENG)[1:-1].strip()
    if 'subtitle' in xpath_dict[domain]:
        article['subtitle'] = translate(encode(page.xpath(xpath_dict[domain]['subtitle'])))
    else:
        article['subtitle'] = translate(summary)
    article['publishDate'] = datemodifier(encode(page.xpath(xpath_dict[domain]['publishdate'])), xpath_dict[domain]['datetime_format'])
    article['link'] = url
    article['attachment'] = ""
    article['sentimentScore'], article['sentimentLabel'] = sentiment_computation(CONTENT_ENG.replace("\n",""))
    article['id'] = uuid.uuid5(uuid.NAMESPACE_OID, article['titleCN']+article['publishDate'])
    print(article['id'], article['site'] )
    update_content(article)

def upsert_content(report):
    """
    Upserts the content of a report into the 'article_china' table in DynamoDB.

    Args:
        report (dict): A dictionary containing the report data.

    Returns:
        dict: The response from the DynamoDB put_item operation.
    """
    dynamodb = get_db_connection()
    table = dynamodb.Table('article_china')
    # Define the item data
    item = {
        'id': str(report['id']),
        'site': report['site'],
        'title': report['title'],
        'titleCN': report['titleCN'],
        'contentCN': report['contentCN'],
        'category': report['category'],
        'author': report['author'],
        'content': report['content'],
        'subtitle': report['subtitle'],
        'publishDate': report['publishDate'],
        'link': report['link'],
        'attachment': report['attachment'],
        # 'authorID': str(report['authorid']),
        # 'entityList': report['entitylist'],
        'sentimentScore': Decimal(str(report['sentimentScore'])).quantize(Decimal('0.01')),
        'sentimentLabel': report['sentimentLabel'],
        'LastModifiedDate': datetime.now().strftime("%Y-%m-%dT%H:%M:%S")
    }
    response = table.put_item(Item=item)
    print(response)

def delete_records(item):
    """
    Deletes a record from the 'article_test' table in DynamoDB.

    Args:
        item (dict): The item to be deleted, containing 'id' and 'site' keys.

    Returns:
        None
    """
    dynamodb_client = get_client_connection()
    dynamodb_client.delete_item(
        TableName="article_test",
        Key={
            'id': {'S': item['id']},
            'site': {'S': item['site']}
        }
    )

def update_content(report):
    """
    Updates the content of an article in the 'article_china' table in DynamoDB.

    Args:
        report (dict): A dictionary containing the report data.

    Returns:
        None
    """
    dynamodb = get_client_connection()
    response = dynamodb.update_item(
        TableName="article_china",
        Key={
            'id': {'S': str(report['id'])},
            'site': {'S': report['site']}
        },
        UpdateExpression='SET title = :title, titleCN = :titleCN, contentCN = :contentCN, category = :category, author = :author, content = :content, subtitle = :subtitle, publishDate = :publishDate, link = :link, attachment = :attachment, sentimentScore = :sentimentScore, sentimentLabel = :sentimentLabel, LastModifiedDate = :LastModifiedDate',
        ExpressionAttributeValues={
            ':title': {'S': report['title']},
            ':titleCN': {'S': report['titleCN']},
            ':contentCN': {'S': report['contentCN']},
            ':category': {'S': report['category']},
            ':author': {'S': report['author']},
            ':content': {'S': report['content']},
            ':subtitle': {'S': report['subtitle']},
            ':publishDate': {'S': report['publishDate']},
            ':link': {'S': report['link']},
            ':attachment': {'S': report['attachment']},
            ':LastModifiedDate': {'S': datetime.now().strftime("%Y-%m-%dT%H:%M:%S")},
            ':sentimentScore': {'N': str(Decimal(str(report['sentimentScore'])).quantize(Decimal('0.01')))},
            ':sentimentLabel': {'S': report['sentimentLabel']}
        }
    )
    print(response)

def update_content_sentiment(report):
    """
    Updates the sentiment score and label of an article in the 'article_test' DynamoDB table.

    Args:
        report (dict): A dictionary containing the report information.

    Returns:
        None
    """
    dynamodb = get_client_connection()
    response = dynamodb.update_item(
                TableName="article_test",
                Key={
                    'id': {'S': report['id']},
                    'site': {'S': report['site']}
                },
                UpdateExpression='SET sentimentScore = :sentimentScore, sentimentLabel = :sentimentLabel',
                ExpressionAttributeValues={
                    ':sentimentScore': {'N': str(Decimal(str(report['sentimentscore'])).quantize(Decimal('0.01')))},
                    ':sentimentLabel': {'S': report['sentimentlabel']}
                }
            )
    print(response)

data = download_files_from_s3('data')