OxbridgeEconomics
commited on
Commit
·
4a8b338
1
Parent(s):
48eb6ea
commit
Browse files- .gitignore +2 -1
- gov.py +42 -200
- utils.py +146 -0
.gitignore
CHANGED
@@ -1 +1,2 @@
|
|
1 |
-
|
|
|
|
1 |
+
env
|
2 |
+
__pycache__
|
gov.py
CHANGED
@@ -1,134 +1,18 @@
|
|
1 |
-
import requests
|
2 |
from datetime import datetime, timedelta
|
3 |
-
from decimal import Decimal
|
4 |
-
import boto3
|
5 |
import uuid
|
6 |
import time
|
7 |
import urllib.request
|
8 |
from lxml import etree
|
9 |
-
from
|
10 |
-
from transformers import pipeline
|
11 |
-
from PyPDF2 import PdfReader
|
12 |
-
import os
|
13 |
-
|
14 |
-
# AWS_ACCESS_KEY_ID = os.environ['AWS_ACCESS_KEY_ID']
|
15 |
-
# AWS_SECRET_ACCESS_KEY = os.environ['AWS_SECRET_ACCESS_KEY']
|
16 |
-
AWS_ACCESS_KEY_ID="AKIAQFXZMGHQYXKWUDWR"
|
17 |
-
AWS_SECRET_ACCESS_KEY="D2A0IEVl5g3Ljbu0Y5iq9WuFETpDeoEpl69C+6xo"
|
18 |
-
|
19 |
-
analyzer = pipeline("sentiment-analysis", model="ProsusAI/finbert")
|
20 |
-
|
21 |
-
translator = Translator()
|
22 |
-
|
23 |
-
def datemodifier(date_string):
|
24 |
-
"""Date Modifier Function"""
|
25 |
-
try:
|
26 |
-
to_date = time.strptime(date_string,"%Y-%m-%d-%H:%M:%S")
|
27 |
-
return time.strftime("%Y-%m-%d",to_date)
|
28 |
-
except:
|
29 |
-
return False
|
30 |
-
|
31 |
-
def fetch_url(url):
|
32 |
-
response = requests.get(url)
|
33 |
-
if response.status_code == 200:
|
34 |
-
return response.text
|
35 |
-
else:
|
36 |
-
return None
|
37 |
-
|
38 |
-
def translist(infolist):
|
39 |
-
"""Translist Function"""
|
40 |
-
out = list(filter(lambda s: s and
|
41 |
-
(isinstance (s,str) or len(s.strip()) > 0), [i.strip() for i in infolist]))
|
42 |
-
return out
|
43 |
-
|
44 |
-
def encode(content):
|
45 |
-
"""Encode Function"""
|
46 |
-
text = ''
|
47 |
-
for element in content[:1]:
|
48 |
-
if isinstance(element, etree._Element):
|
49 |
-
subelement = etree.tostring(element).decode()
|
50 |
-
subpage = etree.HTML(subelement)
|
51 |
-
tree = subpage.xpath('//text()')
|
52 |
-
line = ''.join(translist(tree)).\
|
53 |
-
replace('\n','').replace('\t','').replace('\r','').replace(' ','').strip()
|
54 |
-
else:
|
55 |
-
line = element
|
56 |
-
text += line
|
57 |
-
index = text.find('打印本页')
|
58 |
-
if index != -1:
|
59 |
-
text = text[:index]
|
60 |
-
|
61 |
-
return text
|
62 |
-
|
63 |
-
def extract_from_pdf(url):
|
64 |
-
# Send a GET request to the URL and retrieve the PDF content
|
65 |
-
response = requests.get(url)
|
66 |
-
pdf_content = response.content
|
67 |
-
|
68 |
-
# Save the PDF content to a local file
|
69 |
-
with open("downloaded_file.pdf", "wb") as f:
|
70 |
-
f.write(pdf_content)
|
71 |
-
|
72 |
-
# Open the downloaded PDF file and extract the text
|
73 |
-
with open("downloaded_file.pdf", "rb") as f:
|
74 |
-
pdf_reader = PdfReader(f)
|
75 |
-
num_pages = len(pdf_reader.pages)
|
76 |
-
extracted_text = ""
|
77 |
-
extracted_text_eng = ""
|
78 |
-
for page in range(num_pages):
|
79 |
-
text = pdf_reader.pages[page].extract_text()
|
80 |
-
if text and text[0].isdigit():
|
81 |
-
text = text[1:]
|
82 |
-
first_newline_index = text.find('\n')
|
83 |
-
text = text[:first_newline_index+1].replace('\n', ' ') + text[first_newline_index+1:].replace('\n', '')
|
84 |
-
extracted_text_eng += translator.translate(text, dest='en').text
|
85 |
-
extracted_text += text
|
86 |
-
return extracted_text, extracted_text_eng
|
87 |
-
|
88 |
-
def get_db_connection():
|
89 |
-
"""Get dynamoDB connection"""
|
90 |
-
dynamodb = boto3.resource(
|
91 |
-
service_name='dynamodb',
|
92 |
-
region_name='us-east-1',
|
93 |
-
aws_access_key_id=AWS_ACCESS_KEY_ID,
|
94 |
-
aws_secret_access_key=AWS_SECRET_ACCESS_KEY
|
95 |
-
)
|
96 |
-
return dynamodb
|
97 |
-
|
98 |
-
def upsert_content(report):
|
99 |
-
"""Upsert the content records"""
|
100 |
-
dynamodb = get_db_connection()
|
101 |
-
table = dynamodb.Table('article_china')
|
102 |
-
# Define the item data
|
103 |
-
item = {
|
104 |
-
'id': str(report['id']),
|
105 |
-
'site': report['site'],
|
106 |
-
'title': report['title'],
|
107 |
-
# 'originalSite': report['originalSite'],
|
108 |
-
# 'originalTitle': report['originalTitle'],
|
109 |
-
# 'originalContent': report['originalContent'],
|
110 |
-
'category': report['category'],
|
111 |
-
# 'author': report['author'],
|
112 |
-
'content': report['content'],
|
113 |
-
'publishDate': report['publishDate'],
|
114 |
-
'link': report['url'],
|
115 |
-
# 'attachment': report['reporturl'],
|
116 |
-
# 'authorID': str(report['authorid']),
|
117 |
-
'sentimentScore': str(Decimal(report['sentimentScore']).quantize(Decimal('0.01'))),
|
118 |
-
'sentimentLabel': report['sentimentLabel'],
|
119 |
-
'LastModifiedDate': datetime.now().strftime("%Y-%m-%dT%H:%M:%S")
|
120 |
-
}
|
121 |
-
response = table.put_item(Item=item)
|
122 |
-
print(response)
|
123 |
|
124 |
i = 0
|
125 |
while i > -1:
|
126 |
if i == 0:
|
127 |
-
|
128 |
else:
|
129 |
-
|
130 |
i = i + 1
|
131 |
-
req = urllib.request.urlopen(
|
132 |
text = req.read()
|
133 |
html_text = text.decode("utf-8")
|
134 |
page = etree.HTML(html_text)
|
@@ -148,46 +32,25 @@ while i > -1:
|
|
148 |
article = {}
|
149 |
url = url.replace('../', 'https://www.gov.cn/zhengce/')
|
150 |
if "https://www.gov.cn" in url:
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
-
|
164 |
-
|
165 |
-
|
166 |
-
|
167 |
-
|
168 |
-
|
169 |
-
|
170 |
-
"negative": "-",
|
171 |
-
"neutral": "0",
|
172 |
-
}
|
173 |
-
sentiment_score = 0
|
174 |
-
maximum_value = 0
|
175 |
-
raw_sentiment = analyzer(article['content'][:512], return_all_scores=True)
|
176 |
-
sentiment_label = None
|
177 |
-
for sentiment_dict in raw_sentiment[0]:
|
178 |
-
value = sentiment_dict["score"]
|
179 |
-
if value > maximum_value:
|
180 |
-
sentiment_label = sentiment_dict["label"]
|
181 |
-
maximum_value = value
|
182 |
-
if sentiment_dict["label"] == "positive":
|
183 |
-
sentiment_score = sentiment_score + value
|
184 |
-
if sentiment_dict["label"] == "negative":
|
185 |
-
sentiment_score = sentiment_score - value
|
186 |
-
else:
|
187 |
-
sentiment_score = sentiment_score + 0
|
188 |
-
article['sentimentScore'] = sentiment_score
|
189 |
-
article['sentimentLabel'] = label_dict[sentiment_label]
|
190 |
-
upsert_content(article)
|
191 |
except Exception as error:
|
192 |
print(error)
|
193 |
|
@@ -218,45 +81,24 @@ while i > -1:
|
|
218 |
article = {}
|
219 |
url = url.replace('../', 'https://www.gov.cn/zhengce/')
|
220 |
if "https://www.gov.cn" in url:
|
221 |
-
|
222 |
-
|
223 |
-
|
224 |
-
|
225 |
-
|
226 |
-
|
227 |
-
|
228 |
-
|
229 |
-
|
230 |
-
|
231 |
-
|
232 |
-
|
233 |
-
|
234 |
-
|
235 |
-
|
236 |
-
|
237 |
-
|
238 |
-
|
239 |
-
|
240 |
-
"negative": "-",
|
241 |
-
"neutral": "0",
|
242 |
-
}
|
243 |
-
sentiment_score = 0
|
244 |
-
maximum_value = 0
|
245 |
-
raw_sentiment = analyzer(article['content'][:512], return_all_scores=True)
|
246 |
-
sentiment_label = None
|
247 |
-
for sentiment_dict in raw_sentiment[0]:
|
248 |
-
value = sentiment_dict["score"]
|
249 |
-
if value > maximum_value:
|
250 |
-
sentiment_label = sentiment_dict["label"]
|
251 |
-
maximum_value = value
|
252 |
-
if sentiment_dict["label"] == "positive":
|
253 |
-
sentiment_score = sentiment_score + value
|
254 |
-
if sentiment_dict["label"] == "negative":
|
255 |
-
sentiment_score = sentiment_score - value
|
256 |
-
else:
|
257 |
-
sentiment_score = sentiment_score + 0
|
258 |
-
article['sentimentScore'] = sentiment_score
|
259 |
-
article['sentimentLabel'] = label_dict[sentiment_label]
|
260 |
-
upsert_content(article)
|
261 |
except Exception as error:
|
262 |
print(error)
|
|
|
|
|
1 |
from datetime import datetime, timedelta
|
|
|
|
|
2 |
import uuid
|
3 |
import time
|
4 |
import urllib.request
|
5 |
from lxml import etree
|
6 |
+
from utils import encode, translate, datemodifier, sentiment_computation, upsert_content
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
7 |
|
8 |
i = 0
|
9 |
while i > -1:
|
10 |
if i == 0:
|
11 |
+
CATEGORY_URL = "https://www.gov.cn/zhengce/jiedu/home.htm"
|
12 |
else:
|
13 |
+
CATEGORY_URL = f"https://www.gov.cn/zhengce/jiedu/home_{i}.htm"
|
14 |
i = i + 1
|
15 |
+
req = urllib.request.urlopen(CATEGORY_URL)
|
16 |
text = req.read()
|
17 |
html_text = text.decode("utf-8")
|
18 |
page = etree.HTML(html_text)
|
|
|
32 |
article = {}
|
33 |
url = url.replace('../', 'https://www.gov.cn/zhengce/')
|
34 |
if "https://www.gov.cn" in url:
|
35 |
+
req = urllib.request.urlopen(url)
|
36 |
+
text = req.read()
|
37 |
+
html_text = text.decode("utf-8")
|
38 |
+
page = etree.HTML(html_text)
|
39 |
+
article['originalContent'] = encode(page.xpath("//div[contains(@id, 'UCAP-CONTENT')]//p"))
|
40 |
+
CONTENT_ENG = ''
|
41 |
+
for element in article['originalContent'].split("。"):
|
42 |
+
CONTENT_ENG += translate(element) + ' '
|
43 |
+
article['content'] = CONTENT_ENG
|
44 |
+
article['site'] = "State Council"
|
45 |
+
article['originalSite'] = "国务院"
|
46 |
+
article['originalTitle'] = page.xpath("//title/text()")[0]
|
47 |
+
article['title'] = translate(article['originalTitle'])
|
48 |
+
article['url'] = url
|
49 |
+
article['category']= "Policy Interpretation"
|
50 |
+
article['publishDate'] = datemodifier(page.xpath("//meta[@name = 'firstpublishedtime']/@content")[0], "%Y-%m-%d-%H:%M:%S")
|
51 |
+
article['id'] = uuid.uuid5(uuid.NAMESPACE_OID, article['title']+article['publishDate'])
|
52 |
+
article['sentimentScore'], article['sentimentLabel'] = sentiment_computation(article['content'])
|
53 |
+
upsert_content(article)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
54 |
except Exception as error:
|
55 |
print(error)
|
56 |
|
|
|
81 |
article = {}
|
82 |
url = url.replace('../', 'https://www.gov.cn/zhengce/')
|
83 |
if "https://www.gov.cn" in url:
|
84 |
+
req = urllib.request.urlopen(url)
|
85 |
+
text = req.read()
|
86 |
+
html_text = text.decode("utf-8")
|
87 |
+
page = etree.HTML(html_text)
|
88 |
+
article['originalContent'] = encode(page.xpath("//div[contains(@id, 'UCAP-CONTENT')]//p"))
|
89 |
+
CONTENT_ENG = ''
|
90 |
+
for element in article['originalContent'].split("。"):
|
91 |
+
CONTENT_ENG += translate(article['originalContent']) + ' '
|
92 |
+
article['content'] = CONTENT_ENG
|
93 |
+
article['site'] = "State Council"
|
94 |
+
article['originalSite'] = "国务院"
|
95 |
+
article['originalTitle'] = page.xpath("//title/text()")[0]
|
96 |
+
article['title'] = translate(article['originalTitle'])
|
97 |
+
article['url'] = url
|
98 |
+
article['category']= "Policy Release"
|
99 |
+
article['publishDate'] = datemodifier(page.xpath("//meta[@name = 'firstpublishedtime']/@content")[0], "%Y-%m-%d-%H:%M:%S")
|
100 |
+
article['id'] = uuid.uuid5(uuid.NAMESPACE_OID, article['title']+article['publishDate'])
|
101 |
+
article['sentimentScore'], article['sentimentLabel'] = sentiment_computation(article['content'])
|
102 |
+
upsert_content(article)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
103 |
except Exception as error:
|
104 |
print(error)
|
utils.py
ADDED
@@ -0,0 +1,146 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""Utilis Functions"""
|
2 |
+
import time
|
3 |
+
from datetime import datetime
|
4 |
+
from decimal import Decimal
|
5 |
+
import requests
|
6 |
+
import boto3
|
7 |
+
from lxml import etree
|
8 |
+
from googletrans import Translator
|
9 |
+
from transformers import pipeline
|
10 |
+
from PyPDF2 import PdfReader
|
11 |
+
|
12 |
+
# AWS_ACCESS_KEY_ID = os.environ['AWS_ACCESS_KEY_ID']
|
13 |
+
# AWS_SECRET_ACCESS_KEY = os.environ['AWS_SECRET_ACCESS_KEY']
|
14 |
+
AWS_ACCESS_KEY_ID="AKIAQFXZMGHQYXKWUDWR"
|
15 |
+
AWS_SECRET_ACCESS_KEY="D2A0IEVl5g3Ljbu0Y5iq9WuFETpDeoEpl69C+6xo"
|
16 |
+
|
17 |
+
analyzer = pipeline("sentiment-analysis", model="ProsusAI/finbert")
|
18 |
+
|
19 |
+
translator = Translator()
|
20 |
+
|
21 |
+
def translate(text):
|
22 |
+
return translator.translate(text, dest='en').text
|
23 |
+
|
24 |
+
def datemodifier(date_string, date_format):
|
25 |
+
"""Date Modifier Function"""
|
26 |
+
try:
|
27 |
+
to_date = time.strptime(date_string,date_format)
|
28 |
+
return time.strftime("%Y-%m-%d",to_date)
|
29 |
+
except:
|
30 |
+
return False
|
31 |
+
|
32 |
+
def fetch_url(url):
|
33 |
+
response = requests.get(url)
|
34 |
+
if response.status_code == 200:
|
35 |
+
return response.text
|
36 |
+
else:
|
37 |
+
return None
|
38 |
+
|
39 |
+
def translist(infolist):
|
40 |
+
"""Translist Function"""
|
41 |
+
out = list(filter(lambda s: s and
|
42 |
+
(isinstance (s,str) or len(s.strip()) > 0), [i.strip() for i in infolist]))
|
43 |
+
return out
|
44 |
+
|
45 |
+
def encode(content):
|
46 |
+
"""Encode Function"""
|
47 |
+
text = ''
|
48 |
+
for element in content[:1]:
|
49 |
+
if isinstance(element, etree._Element):
|
50 |
+
subelement = etree.tostring(element).decode()
|
51 |
+
subpage = etree.HTML(subelement)
|
52 |
+
tree = subpage.xpath('//text()')
|
53 |
+
line = ''.join(translist(tree)).\
|
54 |
+
replace('\n','').replace('\t','').replace('\r','').replace(' ','').strip()
|
55 |
+
else:
|
56 |
+
line = element
|
57 |
+
text += line
|
58 |
+
index = text.find('打印本页')
|
59 |
+
if index != -1:
|
60 |
+
text = text[:index]
|
61 |
+
|
62 |
+
return text
|
63 |
+
|
64 |
+
def extract_from_pdf(url):
|
65 |
+
# Send a GET request to the URL and retrieve the PDF content
|
66 |
+
response = requests.get(url)
|
67 |
+
pdf_content = response.content
|
68 |
+
|
69 |
+
# Save the PDF content to a local file
|
70 |
+
with open("downloaded_file.pdf", "wb") as f:
|
71 |
+
f.write(pdf_content)
|
72 |
+
|
73 |
+
# Open the downloaded PDF file and extract the text
|
74 |
+
with open("downloaded_file.pdf", "rb") as f:
|
75 |
+
pdf_reader = PdfReader(f)
|
76 |
+
num_pages = len(pdf_reader.pages)
|
77 |
+
extracted_text = ""
|
78 |
+
extracted_text_eng = ""
|
79 |
+
for page in range(num_pages):
|
80 |
+
text = pdf_reader.pages[page].extract_text()
|
81 |
+
if text and text[0].isdigit():
|
82 |
+
text = text[1:]
|
83 |
+
first_newline_index = text.find('\n')
|
84 |
+
text = text[:first_newline_index+1].replace('\n', ' ') + text[first_newline_index+1:].replace('\n', '')
|
85 |
+
extracted_text_eng += translator.translate(text, dest='en').text
|
86 |
+
extracted_text += text
|
87 |
+
return extracted_text, extracted_text_eng
|
88 |
+
|
89 |
+
def get_db_connection():
|
90 |
+
"""Get dynamoDB connection"""
|
91 |
+
dynamodb = boto3.resource(
|
92 |
+
service_name='dynamodb',
|
93 |
+
region_name='us-east-1',
|
94 |
+
aws_access_key_id=AWS_ACCESS_KEY_ID,
|
95 |
+
aws_secret_access_key=AWS_SECRET_ACCESS_KEY
|
96 |
+
)
|
97 |
+
return dynamodb
|
98 |
+
|
99 |
+
def sentiment_computation(content):
|
100 |
+
label_dict = {
|
101 |
+
"positive": "+",
|
102 |
+
"negative": "-",
|
103 |
+
"neutral": "0",
|
104 |
+
}
|
105 |
+
sentiment_score = 0
|
106 |
+
maximum_value = 0
|
107 |
+
raw_sentiment = analyzer(content[:512], return_all_scores=True)
|
108 |
+
sentiment_label = None
|
109 |
+
for sentiment_dict in raw_sentiment[0]:
|
110 |
+
value = sentiment_dict["score"]
|
111 |
+
if value > maximum_value:
|
112 |
+
sentiment_label = sentiment_dict["label"]
|
113 |
+
maximum_value = value
|
114 |
+
if sentiment_dict["label"] == "positive":
|
115 |
+
sentiment_score = sentiment_score + value
|
116 |
+
if sentiment_dict["label"] == "negative":
|
117 |
+
sentiment_score = sentiment_score - value
|
118 |
+
else:
|
119 |
+
sentiment_score = sentiment_score + 0
|
120 |
+
return sentiment_score, label_dict[sentiment_label]
|
121 |
+
|
122 |
+
def upsert_content(report):
|
123 |
+
"""Upsert the content records"""
|
124 |
+
dynamodb = get_db_connection()
|
125 |
+
table = dynamodb.Table('article_china')
|
126 |
+
# Define the item data
|
127 |
+
item = {
|
128 |
+
'id': str(report['id']),
|
129 |
+
'site': report['site'],
|
130 |
+
'title': report['title'],
|
131 |
+
# 'originalSite': report['originalSite'],
|
132 |
+
# 'originalTitle': report['originalTitle'],
|
133 |
+
# 'originalContent': report['originalContent'],
|
134 |
+
'category': report['category'],
|
135 |
+
# 'author': report['author'],
|
136 |
+
'content': report['content'],
|
137 |
+
'publishDate': report['publishDate'],
|
138 |
+
'link': report['url'],
|
139 |
+
# 'attachment': report['reporturl'],
|
140 |
+
# 'authorID': str(report['authorid']),
|
141 |
+
'sentimentScore': str(Decimal(report['sentimentScore']).quantize(Decimal('0.01'))),
|
142 |
+
'sentimentLabel': report['sentimentLabel'],
|
143 |
+
'LastModifiedDate': datetime.now().strftime("%Y-%m-%dT%H:%M:%S")
|
144 |
+
}
|
145 |
+
response = table.put_item(Item=item)
|
146 |
+
print(response)
|