File size: 5,137 Bytes
4e18ce3
 
 
693e166
4e18ce3
693e166
4e18ce3
62774df
 
4e18ce3
 
693e166
4e18ce3
 
 
 
c0eabca
4e18ce3
62774df
 
4e18ce3
62774df
 
 
4e18ce3
5fea365
693e166
 
 
 
 
 
 
 
 
 
 
 
f313f6f
693e166
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5fea365
693e166
 
 
c0eabca
693e166
 
 
5fea365
693e166
5fea365
693e166
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f313f6f
 
693e166
 
 
 
 
 
 
 
 
 
 
5fea365
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
"""Module to upsert data into AstraDB"""
import os
import logging
import time

import tiktoken
import pandas as pd
from langchain_astradb import AstraDBVectorStore
from langchain_openai import AzureOpenAIEmbeddings
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain_community.document_loaders import DataFrameLoader
from astrapy.info import CollectionVectorServiceOptions

logging.basicConfig(
    format='%(asctime)s - %(levelname)s - %(funcName)s - %(message)s',
    datefmt="%Y-%m-%d %H:%M:%S",
    level=logging.ERROR)

ASTRA_DB_APPLICATION_TOKEN = os.environ['ASTRA_DB_APPLICATION_TOKEN']
ASTRA_DB_API_ENDPOINT = os.environ['ASTRA_DB_API_ENDPOINT']

embedding = AzureOpenAIEmbeddings(
    api_version="2024-07-01-preview",
    azure_endpoint="https://openai-oe.openai.azure.com/")

vstore = AstraDBVectorStore(
    collection_vector_service_options=CollectionVectorServiceOptions(
        provider="azureOpenAI",
        model_name="text-embedding-3-small",
        authentication={
            "providerKey": "AZURE_OPENAI_API_KEY",
        },
        parameters={
            "resourceName": "openai-oe",
            "deploymentId": "text-embedding-3-small",
        },
    ),
    namespace="default_keyspace",
    collection_name="article",
    token=os.environ["ASTRA_DB_APPLICATION_TOKEN"],
    api_endpoint=os.environ["ASTRA_DB_API_ENDPOINT"])

def token_length(text):
    """
    Calculates length of encoded text using the tokenizer for the "text-embedding-3-small" model.

    Args:
        text (str): The input text to be tokenized and measured.

    Returns:
        int: The length of the encoded text.
    """
    tokenizer = tiktoken.encoding_for_model("text-embedding-3-small")
    return len(tokenizer.encode(text))

def add_documents_with_retry(chunks, ids, max_retries=3):
    """
    Attempts to add documents to the vstore with a specified number of retries.

    Parameters:
    chunks (list): The list of document chunks to be added.
    ids (list): The list of document IDs corresponding to the chunks.
    max_retries (int, optional): The maximum number of retry attempts. Default is 3.

    Raises:
    Exception: If the operation fails after the maximum number of retries, the exception is logged.
    """
    for attempt in range(max_retries):
        try:
            vstore.add_documents(chunks, ids=ids)
        except (ConnectionError, TimeoutError) as e:
            logging.info("Attempt %d failed: %s", attempt + 1, e)
            if attempt < max_retries - 1:
                time.sleep(10)
            else:
                logging.error("Max retries reached. Operation failed.")
                logging.error(ids)
                print(ids)

def vectorize(article):
    """
    Process the given article.

    Parameters:
    article (DataFrame): The article to be processed.

    Returns:
    None
    """
    article['id'] = str(article['id'])
    if isinstance(article, dict):
        article = [article]  # Convert single dictionary to list of dictionaries
    df = pd.DataFrame(article)
    df = df[['id', 'publishDate', 'author', 'category',
                         'content', 'referenceid', 'site', 'title', 'link']]
    df['publishDate'] = pd.to_datetime(df['publishDate'])
    documents = DataFrameLoader(df, page_content_column="content").load()
    text_splitter = RecursiveCharacterTextSplitter(
            chunk_size=1000,
            chunk_overlap=200,
            length_function=token_length,
            is_separator_regex=False,
            separators=["\n\n", "\n", "\t", "\\n"]  # Logical separators
        )
    chunks = text_splitter.split_documents(documents)
    ids = []
    for index, chunk in enumerate(chunks):
        _id = f"{chunk.metadata['id']}-{str(index)}"
        ids.append(_id)
    try:
        add_documents_with_retry(chunks, ids)
    except (ConnectionError, TimeoutError, ValueError) as e:
        logging.error("Failed to add documents: %s", e)

# def vectorize(article):
#     """
#     Process the given article.

#     Parameters:
#     article (DataFrame): The article to be processed.

#     Returns:
#     None
#     """
#     article['id'] = str(article['id'])
#     if isinstance(article, dict):
#         article = [article]  # Convert single dictionary to list of dictionaries
#     df = pd.DataFrame(article)
#     df = df[['id','site','title','titleCN','category','author','content',
#              'publishDate','link']]
#     df['publishDate'] = pd.to_datetime(df['publishDate'])
#     loader = DataFrameLoader(df, page_content_column="content")
#     documents = loader.load()
#     text_splitter = RecursiveCharacterTextSplitter(
#         chunk_size=800,
#         chunk_overlap=20,
#         length_function=len,
#         is_separator_regex=False,
#     )

#     chunks = text_splitter.split_documents(documents)
#     ids = []
#     for chunk in chunks:
#         _id = f"{chunk.metadata['id']}-{str(uuid.uuid5(uuid.NAMESPACE_OID,chunk.page_content))}"
#         ids.append(_id)
#     inserted_ids = vstore.add_documents(chunks, ids=ids)
#     print(inserted_ids)
#     logging.info(inserted_ids)