OxbridgeEconomics
commited on
Update vectorizer.py
Browse files- controllers/vectorizer.py +26 -132
controllers/vectorizer.py
CHANGED
@@ -1,141 +1,30 @@
|
|
1 |
"""Module to upsert data into AstraDB"""
|
2 |
import os
|
3 |
-
import glob
|
4 |
-
import uuid
|
5 |
import logging
|
6 |
|
7 |
-
import boto3
|
8 |
import pandas as pd
|
9 |
-
import
|
10 |
-
from
|
11 |
-
from astrapy.constants import VectorMetric
|
12 |
-
from astrapy.info import CollectionVectorServiceOptions
|
13 |
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
14 |
from langchain_community.document_loaders import DataFrameLoader
|
15 |
-
from dotenv import load_dotenv
|
16 |
-
|
17 |
-
load_dotenv()
|
18 |
-
|
19 |
-
ASTRA_DB_APPLICATION_TOKEN = os.environ['ASTRA_DB_APPLICATION_TOKEN']
|
20 |
-
ASTRA_DB_API_ENDPOINT = os.environ['ASTRA_DB_API_ENDPOINT']
|
21 |
|
22 |
logging.basicConfig(
|
23 |
format='%(asctime)s - %(levelname)s - %(funcName)s - %(message)s',
|
24 |
datefmt="%Y-%m-%d %H:%M:%S",
|
25 |
level=logging.INFO)
|
26 |
|
27 |
-
|
28 |
-
|
29 |
-
logging.info("* Database : %s", database.info().name)
|
30 |
-
|
31 |
-
if "finfast_marco_china" not in database.list_collection_names():
|
32 |
-
collection = database.create_collection(
|
33 |
-
"finfast_marco_china",
|
34 |
-
metric=VectorMetric.COSINE,
|
35 |
-
service=CollectionVectorServiceOptions(
|
36 |
-
provider="nvidia",
|
37 |
-
model_name="NV-Embed-QA",
|
38 |
-
),
|
39 |
-
)
|
40 |
-
else:
|
41 |
-
collection = database.get_collection("finfast_marco_china")
|
42 |
-
logging.info("* Collection: %s", collection.full_name)
|
43 |
-
|
44 |
-
|
45 |
-
def truncate_tokens(string: str, encoding_name: str, max_length: int = 8192) -> str:
|
46 |
-
"""
|
47 |
-
Truncates a string of tokens to a maximum length.
|
48 |
-
|
49 |
-
Args:
|
50 |
-
string (str): The input string to be truncated.
|
51 |
-
encoding_name (str): The name of the encoding used for tokenization.
|
52 |
-
max_length (int, optional): The maximum length of the truncated string. Defaults to 8192.
|
53 |
-
|
54 |
-
Returns:
|
55 |
-
str: The truncated string.
|
56 |
-
|
57 |
-
"""
|
58 |
-
encoding = tiktoken.encoding_for_model(encoding_name)
|
59 |
-
encoded_string = encoding.encode(string)
|
60 |
-
num_tokens = len(encoded_string)
|
61 |
-
|
62 |
-
if num_tokens > max_length:
|
63 |
-
string = encoding.decode(encoded_string[:max_length])
|
64 |
-
return string
|
65 |
-
|
66 |
-
def upsert(article, db_collection):
|
67 |
-
"""
|
68 |
-
Upserts articles into the index.
|
69 |
-
|
70 |
-
Args:
|
71 |
-
articles (list): A list of articles to be upserted.
|
72 |
-
|
73 |
-
Returns:
|
74 |
-
None
|
75 |
-
"""
|
76 |
-
if article is None or 'content' not in article:
|
77 |
-
return None
|
78 |
-
article = {k: v for k, v in article.items() if v is not None}
|
79 |
-
article["articleid"] = str(article["id"])
|
80 |
-
logging.info(article["id"])
|
81 |
-
del article["id"]
|
82 |
-
if len(article['subtitle'].encode('utf-8')) > 8000:
|
83 |
-
del article['subtitle']
|
84 |
-
article['$vectorize'] = article['content']
|
85 |
-
_id = uuid.uuid5(uuid.NAMESPACE_URL, article['content'])
|
86 |
-
del article["content"]
|
87 |
-
db_collection.update_one(
|
88 |
-
{"_id": _id},
|
89 |
-
{"$set": article},
|
90 |
-
upsert=True)
|
91 |
-
|
92 |
-
def split_documents(content, page_content_column="content", chunk_size=800, chunk_overlap=20):
|
93 |
-
"""
|
94 |
-
Splits a given content into smaller documents using a recursive character text splitter.
|
95 |
-
|
96 |
-
Args:
|
97 |
-
content (pandas.DataFrame): The input content to be split.
|
98 |
-
page_content_column (str, optional): \
|
99 |
-
The name of the column in the input content that contains the text to be split.
|
100 |
-
chunk_size (int, optional): The maximum size of each chunk. Defaults to 800.
|
101 |
-
chunk_overlap (int, optional): \
|
102 |
-
The number of overlapping characters between chunks. Defaults to 20.
|
103 |
-
|
104 |
-
Returns:
|
105 |
-
list: A list of the split documents.
|
106 |
-
"""
|
107 |
-
loader = DataFrameLoader(content, page_content_column=page_content_column)
|
108 |
-
documents = loader.load()
|
109 |
-
text_splitter = RecursiveCharacterTextSplitter(
|
110 |
-
chunk_size=chunk_size,
|
111 |
-
chunk_overlap=chunk_overlap,
|
112 |
-
length_function=len,
|
113 |
-
is_separator_regex=False,
|
114 |
-
)
|
115 |
-
_docs = text_splitter.split_documents(documents)
|
116 |
-
return _docs
|
117 |
-
|
118 |
-
def documents_to_list_of_dicts(documents):
|
119 |
-
"""
|
120 |
-
Converts a list of documents to a list of dictionaries.
|
121 |
|
122 |
-
|
123 |
-
-
|
|
|
124 |
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
"""
|
131 |
-
doc_dict_list = []
|
132 |
-
for _doc in documents:
|
133 |
-
doc_dict = {}
|
134 |
-
doc_dict['content'] = _doc.page_content
|
135 |
-
for key, item in _doc.metadata.items():
|
136 |
-
doc_dict[key] = item
|
137 |
-
doc_dict_list.append(doc_dict)
|
138 |
-
return doc_dict_list
|
139 |
|
140 |
def vectorize(article):
|
141 |
"""
|
@@ -148,13 +37,18 @@ def vectorize(article):
|
|
148 |
None
|
149 |
"""
|
150 |
df = pd.DataFrame(article)
|
151 |
-
df = df[['id','site','title','titleCN','
|
|
|
152 |
df['sentimentScore'] = df['sentimentScore'].round(2)
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
|
160 |
-
|
|
|
|
|
|
|
|
|
|
1 |
"""Module to upsert data into AstraDB"""
|
2 |
import os
|
|
|
|
|
3 |
import logging
|
4 |
|
|
|
5 |
import pandas as pd
|
6 |
+
from langchain_astradb import AstraDBVectorStore
|
7 |
+
from langchain_openai import AzureOpenAIEmbeddings
|
|
|
|
|
8 |
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
9 |
from langchain_community.document_loaders import DataFrameLoader
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
|
11 |
logging.basicConfig(
|
12 |
format='%(asctime)s - %(levelname)s - %(funcName)s - %(message)s',
|
13 |
datefmt="%Y-%m-%d %H:%M:%S",
|
14 |
level=logging.INFO)
|
15 |
|
16 |
+
ASTRA_DB_APPLICATION_TOKEN = os.environ['ASTRA_DB_APPLICATION_TOKEN']
|
17 |
+
ASTRA_DB_API_ENDPOINT = os.environ['ASTRA_DB_API_ENDPOINT']
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
18 |
|
19 |
+
embedding = AzureOpenAIEmbeddings(
|
20 |
+
api_version="2024-07-01-preview",
|
21 |
+
azure_endpoint="https://openai-oe.openai.azure.com/")
|
22 |
|
23 |
+
vstore = AstraDBVectorStore(embedding=embedding,
|
24 |
+
namespace="default_keyspace",
|
25 |
+
collection_name="finfast_china_test",
|
26 |
+
token=os.environ["ASTRA_DB_APPLICATION_TOKEN"],
|
27 |
+
api_endpoint=os.environ["ASTRA_DB_API_ENDPOINT"])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
28 |
|
29 |
def vectorize(article):
|
30 |
"""
|
|
|
37 |
None
|
38 |
"""
|
39 |
df = pd.DataFrame(article)
|
40 |
+
df = df[['id','site','title','titleCN','category','author','content',
|
41 |
+
'publishDate','link','attachment','sentimentScore','sentimentLabel']]
|
42 |
df['sentimentScore'] = df['sentimentScore'].round(2)
|
43 |
+
loader = DataFrameLoader(df, page_content_column="content")
|
44 |
+
documents = loader.load()
|
45 |
+
text_splitter = RecursiveCharacterTextSplitter(
|
46 |
+
chunk_size=800,
|
47 |
+
chunk_overlap=20,
|
48 |
+
length_function=len,
|
49 |
+
is_separator_regex=False,
|
50 |
+
)
|
51 |
+
|
52 |
+
docs = text_splitter.split_documents(documents)
|
53 |
+
inserted_ids = vstore.add_documents(docs)
|
54 |
+
logging.info(inserted_ids)
|