File size: 4,949 Bytes
4a8b338
bdad171
4a8b338
 
 
 
 
 
 
 
 
 
b8e1f0f
 
 
 
4a8b338
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1580b60
4a8b338
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1580b60
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
"""Utilis Functions"""
import os
import time
from datetime import datetime
from decimal import Decimal
import requests
import boto3
from lxml import etree
from googletrans import Translator
from transformers import pipeline
from PyPDF2 import PdfReader

AWS_ACCESS_KEY_ID = os.environ['AWS_ACCESS_KEY_ID']
AWS_SECRET_ACCESS_KEY = os.environ['AWS_SECRET_ACCESS_KEY']
# AWS_ACCESS_KEY_ID="AKIAQFXZMGHQYXKWUDWR"
# AWS_SECRET_ACCESS_KEY="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"

analyzer = pipeline("sentiment-analysis", model="ProsusAI/finbert")

translator = Translator()

def translate(text):
    return translator.translate(text, dest='en').text

def datemodifier(date_string, date_format):
    """Date Modifier Function"""
    try:
        to_date = time.strptime(date_string,date_format)
        return time.strftime("%Y-%m-%d",to_date)
    except:
        return False

def fetch_url(url):
    response = requests.get(url)
    if response.status_code == 200:
        return response.text
    else:
        return None

def translist(infolist):
    """Translist Function"""
    out = list(filter(lambda s: s and
                      (isinstance (s,str) or len(s.strip()) > 0), [i.strip() for i in infolist]))
    return out

def encode(content):
    """Encode Function"""
    text = ''
    for element in content[:1]:
        if isinstance(element, etree._Element):
            subelement = etree.tostring(element).decode()
            subpage = etree.HTML(subelement)
            tree = subpage.xpath('//text()')
            line = ''.join(translist(tree)).\
                replace('\n','').replace('\t','').replace('\r','').replace('  ','').strip()
        else:
            line = element
        text += line
        index = text.find('打印本页')
        if index != -1:
          text = text[:index]
        
    return text

def extract_from_pdf(url):
    # Send a GET request to the URL and retrieve the PDF content
    response = requests.get(url)
    pdf_content = response.content

    # Save the PDF content to a local file
    with open("downloaded_file.pdf", "wb") as f:
        f.write(pdf_content)

    # Open the downloaded PDF file and extract the text
    with open("downloaded_file.pdf", "rb") as f:
        pdf_reader = PdfReader(f)
        num_pages = len(pdf_reader.pages)
        extracted_text = ""
        extracted_text_eng = ""
        for page in range(num_pages):
            text = pdf_reader.pages[page].extract_text()
            if text and text[0].isdigit():
                text = text[1:]
            first_newline_index = text.find('\n')
            text = text[:first_newline_index+1].replace('\n', ' ') + text[first_newline_index+1:].replace('\n', '')
            extracted_text_eng += translator.translate(text, dest='en').text
            extracted_text += text
    return extracted_text, extracted_text_eng

def get_db_connection():
    """Get dynamoDB connection"""
    dynamodb = boto3.resource(
    service_name='dynamodb',
    region_name='us-east-1',
    aws_access_key_id=AWS_ACCESS_KEY_ID,
    aws_secret_access_key=AWS_SECRET_ACCESS_KEY
    )
    return dynamodb

def sentiment_computation(content):
    label_dict = {
        "positive": "+",
        "negative": "-",
        "neutral": "0",
    }
    sentiment_score = 0
    maximum_value = 0
    raw_sentiment = analyzer(content[:512], return_all_scores=True)
    sentiment_label = None
    for sentiment_dict in raw_sentiment[0]:
        value = sentiment_dict["score"]
        if value > maximum_value:
            sentiment_label = sentiment_dict["label"]
            maximum_value = value
        if sentiment_dict["label"] == "positive":
            sentiment_score = sentiment_score + value
        if sentiment_dict["label"] == "negative":
            sentiment_score = sentiment_score - value
        else:
            sentiment_score = sentiment_score + 0
    return sentiment_score, label_dict[sentiment_label]

def upsert_content(report):
    """Upsert the content records"""
    dynamodb = get_db_connection()
    table = dynamodb.Table('article_china')
        # Define the item data
    item = {
        'id': str(report['id']),
        'site': report['site'],
        'title': report['title'],
        # 'originalSite': report['originalSite'],
        # 'originalTitle': report['originalTitle'],
        # 'originalContent': report['originalContent'],
        'category': report['category'],
        # 'author': report['author'],
        'content': report['content'],
        'publishDate': report['publishDate'],
        'link': report['url'],
        # 'attachment': report['reporturl'],
        # 'authorID': str(report['authorid']),
        'sentimentScore': str(Decimal(report['sentimentScore']).quantize(Decimal('0.01'))),
        'sentimentLabel': report['sentimentLabel'],
        'LastModifiedDate': datetime.now().strftime("%Y-%m-%dT%H:%M:%S")
    }
    response = table.put_item(Item=item)
    print(response)