Omarrran's picture
Update app.py
6f14fd9 verified
raw
history blame
7.48 kB
import os
import tempfile
import time
import re
import logging
from datetime import datetime
import gradio as gr
import google.generativeai as genai
from PyPDF2 import PdfReader
from tika import parser
from unstructured.partition.pdf import partition_pdf
# Configure logging
tmp_log = "pdf_processor_log.txt"
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(levelname)s - %(message)s',
handlers=[
logging.StreamHandler(),
logging.FileHandler(tmp_log)
]
)
logger = logging.getLogger("pdf_processor")
# Load API key from environment
API_KEY = os.getenv("GOOGLE_API_KEY", None)
if not API_KEY:
logger.warning("GOOGLE_API_KEY not set in environment.")
else:
genai.configure(api_key=API_KEY)
# Globals to store state
EXTRACTED_TEXT = ""
PDF_SECTIONS = []
EXTRACTION_METHOD = ""
# --- Extraction Functions ---
def extract_text_with_unstructured(pdf_path):
logger.info("Extracting via Unstructured.io...")
elements = partition_pdf(filename=pdf_path, extract_images_in_pdf=False)
sections, current = [], {"title":"Introduction","content":""}
for e in elements:
if hasattr(e, "text") and (t := e.text.strip()):
if len(t)<80 and (t.isupper() or t.endswith(':') or re.match(r'^[0-9]+\.?\s+', t)):
if current["content"]: sections.append(current)
current = {"title":t, "content":""}
else:
current["content"] += t + "\n\n"
if current["content"]: sections.append(current)
return sections
def extract_text_with_pypdf(pdf_path):
logger.info("Extracting via PyPDF2...")
reader = PdfReader(pdf_path)
full = ""
for i,p in enumerate(reader.pages,1):
if (txt := p.extract_text()): full += f"\n\n--- Page {i} ---\n\n{txt}"
parts = re.split(r"\n\s*([A-Z][A-Z\s]+:?|[0-9]+\.\s+[A-Z].*?)\s*\n", full)
if len(parts)>1:
return [{"title":parts[i].strip(),"content":parts[i+1].strip()} for i in range(1,len(parts),2)]
# fallback to single section
return [{"title":"Document","content":full}]
def extract_text_with_tika(pdf_path):
logger.info("Extracting via Tika...")
parsed = parser.from_file(pdf_path)
lines = parsed.get("content","").split("\n")
sections, current = [], {"title":"Introduction","content":""}
for ln in lines:
ln = ln.strip()
if not ln: continue
if len(ln)<80 and (ln.isupper() or ln.endswith(':') or re.match(r'^[0-9]+\.?\s+[A-Z]', ln)):
if current["content"]: sections.append(current)
current = {"title":ln, "content":""}
else:
current["content"] += ln + "\n\n"
if current["content"]: sections.append(current)
return sections
# --- Gemini API calls ---
def generate_greg_brockman_summary(content):
model = genai.GenerativeModel('gemini-1.5-pro')
prompt = f"""
You are an expert document analyst...
{content}
"""
try:
resp = model.generate_content(prompt)
return resp.text, None
except Exception as e:
logger.error(e)
return None, str(e)
def answer_question_about_pdf(content, question):
model = genai.GenerativeModel('gemini-1.5-pro')
prompt = f"""
You are a precise document analysis assistant...
DOCUMENT CONTENT:
{content}
QUESTION: {question}
"""
try:
resp = model.generate_content(prompt)
return resp.text, None
except Exception as e:
logger.error(e)
return None, str(e)
# --- Processing & Q&A ---
def process_pdf(pdf_file, progress=gr.Progress()):
global EXTRACTED_TEXT, PDF_SECTIONS, EXTRACTION_METHOD
if not API_KEY:
return None, None, "❌ Set GOOGLE_API_KEY in settings.", ""
if pdf_file is None:
return None, None, "❌ No file uploaded.", ""
tmp = tempfile.gettempdir()
path = os.path.join(tmp, pdf_file.name)
with open(path, 'wb') as f: f.write(pdf_file.read())
methods = [("unstructured", extract_text_with_unstructured),
("pypdf", extract_text_with_pypdf),
("tika", extract_text_with_tika)]
for name, fn in methods:
try:
secs = fn(path)
if secs:
EXTRACTION_METHOD = name
PDF_SECTIONS = secs
break
except:
continue
if not PDF_SECTIONS:
return None, None, "❌ Extraction failed.", ""
combined, struct = "", ""
for i,sec in enumerate(PDF_SECTIONS,1):
struct += f"{i}. {sec['title']}\n"
block = f"## {sec['title']}\n{sec['content']}\n\n"
combined += block if len(combined+block)<30000 else f"## {sec['title']}\n[Truncated]\n\n"
EXTRACTED_TEXT = combined
summary, err = generate_greg_brockman_summary(combined)
if err:
return None, struct, f"❌ {err}", combined
return summary, struct, "βœ… Done", f"Used {EXTRACTION_METHOD}, {len(PDF_SECTIONS)} sections"
def ask_question(question):
if not API_KEY: return "❌ Set GOOGLE_API_KEY."
if not EXTRACTED_TEXT: return "❌ Process a PDF first."
if not question.strip(): return "❌ Enter a question."
ans, err = answer_question_about_pdf(EXTRACTED_TEXT, question)
return ans if not err else f"❌ {err}"
def view_log():
try:
return open(tmp_log).read()
except:
return "Error reading log."
def save_summary(summary):
if not summary: return "❌ No summary."
fn = f"summary_{datetime.now():%Y%m%d_%H%M%S}.txt"
open(fn, 'w', encoding='utf-8').write(summary)
return f"βœ… Saved to {fn}"
def save_qa(question, answer):
if not question or not answer: return "❌ Incomplete Q&A."
fn = f"qa_{datetime.now():%Y%m%d_%H%M%S}.txt"
with open(fn,'w',encoding='utf-8') as f:
f.write(f"Q: {question}\n\nA: {answer}")
return f"βœ… Saved to {fn}"
# --- Gradio UI ---
with gr.Blocks(title="PDF Analyzer with Gemini API") as app:
gr.Markdown("# πŸ“„ PDF Analyzer with Gemini API")
gr.Markdown("Upload a PDF, get a summary, ask questions.")
with gr.Tab("PDF Processing"):
pdf_file = gr.File(label="Upload PDF", file_types=[".pdf"], type="binary")
process_btn = gr.Button("Process PDF")
summary_out = gr.Textbox(label="Summary", lines=15)
struct_out = gr.Textbox(label="Structure", lines=8)
status = gr.Markdown("")
log_out = gr.Textbox(label="Log", lines=8)
process_btn.click(process_pdf, inputs=[pdf_file],
outputs=[summary_out, struct_out, status, log_out])
with gr.Tab("Ask Questions"):
question = gr.Textbox(label="Question", lines=2)
ask_btn = gr.Button("Ask")
answer = gr.Textbox(label="Answer", lines=10)
ask_btn.click(ask_question, inputs=[question], outputs=[answer])
with gr.Tab("System Log"):
refresh = gr.Button("Refresh Log")
syslog = gr.Textbox(label="System Log", lines=15)
refresh.click(view_log, inputs=None, outputs=[syslog])
with gr.Row():
save_sum_btn = gr.Button("Save Summary")
save_sum_status = gr.Markdown("")
save_sum_btn.click(save_summary, inputs=[summary_out], outputs=[save_sum_status])
with gr.Row():
save_qa_btn = gr.Button("Save Q&A")
save_qa_status = gr.Markdown("")
save_qa_btn.click(save_qa, inputs=[question, answer], outputs=[save_qa_status])
if __name__ == "__main__":
# For Hugging Face Spaces, set `server_name="0.0.0.0"` if needed
app.launch()